Laboratory assessment of the contribution of aggressive to concrete chemical compounds to the degradation of Portland cement-based materials during anaerobic digestion

Matériaux et constructions - Tập 54 - Trang 1-20 - 2021
Marie Giroudon1,2, Matthieu Peyre Lavigne2, Cédric Patapy1, Alexandra Bertron1
1LMDC, Université de Toulouse, UPS, INSA Toulouse, France
2TBI, Université de Toulouse, CNRS, INRA, INSA, Toulouse, France

Tóm tắt

Anaerobic digestion allows renewable energy to be produced through the degradation of bio-waste. The process, which is of economic and ecological interest, is implemented industrially in concrete digesters. Bio-waste is a complex medium with a composition that can vary in time and space. It contains several chemical compounds, including volatile fatty acids, ammonium, and CO2, which are aggressive towards concrete and compromise its durability. The individual effects of the different compounds on concrete are significantly different. To move toward a better design of concrete intended for the building of biogas digesters, this paper aims to understand the mechanisms and intensity of alteration associated with the different components of biowaste and their contribution to the total deterioration. Ordinary Portland cement pastes were immersed for 16 weeks in six synthetic solutions made of the three metabolites, taken alone or in mixes. The mass variations of the specimens, the pH, and the concentration of the chemical elements in solution were monitored over time. The microstructural, chemical and mineralogical changes of the samples were analysed by scanning electron microscopy, electron probe micro-analysis and X-Ray diffraction analyses and showed phenomena of dissolution, leaching and carbonation. The results show that the acetic acid solution was the most aggressive, in accordance with its pH value, and had a predominant effect in mixed solutions, whereas sodium bicarbonate solution induced carbonation and showed a protective effect. Interestingly, despite its reputed high aggressiveness, ammonium nitrate did not have a major impact in mixed solutions.

Tài liệu tham khảo

Lastella G, Testa C, Cornacchia G, Notornicola M, Voltasio F, Sharma VK (2002) Anaerobic digestion of semi-solid organic waste: biogas production and its purification. Energy Convers Manag 43:63–75. https://doi.org/10.1016/S0196-8904(01)00011-5 Lesteur M, Bellon-Maurel V, Gonzalez C, Latrille E, Roger JM, Junqua G, Steyer JP (2010) Alternative methods for determining anaerobic biodegradability: a review. Process Biochem 45:431–440. https://doi.org/10.1016/j.procbio.2009.11.018 Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860. https://doi.org/10.1007/s00253-009-2246-7 ATEE (2018) Club Biogaz, Statistiques filières biogaz - Juillet 2018. http://atee.fr/sites/default/files/2018-09-04_statistiques_filiere_biogaz_club_biogaz_vf.pdf InfoMetha (2020) Etat des lieux de la méthanisation en Europe, InfoMetha. https://www.infometha.org/effets-socioeconomiques/etat-des-lieux-de-la-methanisation-en-europe (accessed September 25, 2020). Fehrenbach H, Giegrich J, Reinhardt G, Sayer U, Gretz M, Lanje K, Schmitz J (2008) Kriterien einer nachhaltigen Bioenergienutzung im globalen Ma\s sstab. UBA-Forschungsbericht 206:41–112 Yun S, Fang W, Du T, Hu X, Huang X, Li X, Zhang C, Lund PD (2018) Use of bio-based carbon materials for improving biogas yield and digestate stability. Energy 164:898–909. https://doi.org/10.1016/j.energy.2018.09.067 European Biogas Association (2019) Statistical Report of the European Biogas Association Abriged version - 2018, Brussels Cole S, Frank JR (1988) Methane from biomass: a systems approach. Springer, Netherlands Evans GM, Furlong JC (2003) Environmental biotechnology - theory and application. Wiley, New York Nathalie Bachmann ESA (2013) 8 - Design and engineering of biogas plants. In: Wellinger A, Murphy J, Baxter D (eds) Biogas handbook, Woodhead Publishing, pp 191–211. https://doi.org/10.1533/9780857097415.2.191. Bertron A, PeyreLavigne M, Patapy C, Erable B (2017) Biodeterioration of concrete in agricultural, agro-food and biogas plants: state of the art and challenges, RILEM Tech. Lett. 2:83–89. https://doi.org/10.21809/rilemtechlett.2017.42. Giroudon M, PeyreLavigne M, Patapy C, Bertron A (2021) Blast-furnace slag cement and metakaolin based geopolymer as construction materials for liquid anaerobic digestion structures: Interactions and biodeterioration mechanisms. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.141518 Koenig A, Dehn F (2016) Biogenic acid attack on concretes in biogas plants. Biosyst Eng 147:226–237. https://doi.org/10.1016/j.biosystemseng.2016.03.007 Voegel C, Giroudon M, Bertron A, Patapy C, Peyre Lavigne M, Verdier T, Erable B (2019) Cementitious materials in biogas systems: Biodeterioration mechanisms and kinetics in CEM I and CAC based materials. Cem Concr Res 124:105815. https://doi.org/10.1016/j.cemconres.2019.105815 Voegel C, Bertron A, Erable B (2016) Mechanisms of cementitious material deterioration in biogas digester. Sci Total Environ 571:892–901. https://doi.org/10.1016/j.scitotenv.2016.07.072 Giroudon M, Perez C, Peyre Lavigne M, Erable B, Lors C, Patapy C, Bertron A (2021) Insights into the local interaction mechanisms between fermenting broken maize and various binder materials for anaerobic digester structures. J Environ Manage 300:113735. https://doi.org/10.1016/j.jenvman.2021.113735 Fisgativa H, Tremier A, Dabert P (2016) Characterizing the variability of food waste quality: A need for efficient valorisation through anaerobic digestion. Waste Manag 50:264–274. https://doi.org/10.1016/j.wasman.2016.01.041 Li K, Liu R, Sun C (2015) Comparison of anaerobic digestion characteristics and kinetics of four livestock manures with different substrate concentrations. Bioresour Technol 198:133–140. https://doi.org/10.1016/j.biortech.2015.08.151 Bertron A (2004) Durabilité des matériaux cimentaires soumis aux acides organiques: cas particulier des effluents d’élevage, Thèse, INSA Toulouse, 2004. https://doi.org/http://www.theses.fr/2004ISAT0030. Bertron A, Duchesne J, Escadeillas G (2007) Degradation of cement pastes by organic acids. Mater Struct 40:341–354. https://doi.org/10.1617/s11527-006-9110-3 Carde C, François R, Torrenti J-M (1996) Leaching of both calcium hydroxide and C-S-H from cement paste: modeling the mechanical behavior. Cem Concr Res 26:1257–1268. https://doi.org/10.1016/0008-8846(96)00095-6 G. Escadeillas, H. Hornain, La durabilité des bétons vis-à-vis des environnements chimiquement agressifs, in: Durabilité Bétons, Presse de l’ENCP, 2008: pp. 613–705. Gallé C, Peycelon H, Le Bescop P (2004) Effect of an accelerated chemical degradation on water permeability and pore structure of cement based materials. Adv Cem Res 16:105–114. https://doi.org/10.1680/adcr.2004.16.3.105 Lea FM (1965) The action of ammonium salts on concrete. Mag Concr Res 17:115–116. https://doi.org/10.1680/macr.1965.17.52.115 AFNOR (2016) FD P18–011. Concrete - Definition and classification of chemically aggressive environments - Recommendations for concrete mix design, Paris, France, 2016 AFNOR (2014) NF EN 206/CN. Concrete - Specification, performance, production and conformity - National addition to the standard NF EN 206, Paris, France, 2014 CIMbéton (2018) Guide de prescription des ciments pour des constructions durables. Cas des bétons coulés en place, 2009. https://www.infociments.fr/ciments/t47-guide-de-prescription-des-ciments-pour-des-constructions-durables CIMbéton (2007) Syndicat National du Béton Prêt à l’Emploi, Syndicat National du Pompage du Béton, Institut de l’Elevage, Ouvrages en béton pour l’exploitation agricole et les aménagements ruraux - Conception, prescription, réalisations, CIMbéton, 2007. https://www.infociments.fr/sites/default/files/article/fichier/CT-B66.pdf Borges PHR, Costa JO, Milestone NB, Lynsdale CJ, Streatfield RE (2010) Carbonation of CH and C-S–H in composite cement pastes containing high amounts of BFS. Cem Concr Res 40:284–292. https://doi.org/10.1016/j.cemconres.2009.10.020 Ngala VT, Page CL (1997) Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cem Concr Res 27:995–1007. https://doi.org/10.1016/S0008-8846(97)00102-6 Šavija B, Luković M (2016) Carbonation of cement paste: Understanding, challenges, and opportunities. Constr Build Mater 117:285–301. https://doi.org/10.1016/j.conbuildmat.2016.04.138 Gruyaert E, Van den Heede P, Maes M, De Belie N (2012) Investigation of the influence of blast-furnace slag on the resistance of concrete against organic acid or sulphate attack by means of accelerated degradation tests. Cem Concr Res 42:173–185. https://doi.org/10.1016/j.cemconres.2011.09.009 Oueslati O, Duchesne J (2012) The effect of SCMs and curing time on resistance of mortars subjected to organic acids. Cem Concr Res 42:205–214. https://doi.org/10.1016/j.cemconres.2011.09.017 Bertron A, Duchesne J, Escadeillas G (2005) Attack of cement pastes exposed to organic acids in manure. Cem Concr Compos 27:898–909. https://doi.org/10.1016/j.cemconcomp.2005.06.003 AFNOR (2016) NF EN 196–1. Methods of testing cement - Part 1: Determination of strength, Paris, France, 2016. AFNOR (2010) NF P18–459. Concrete - Testing hardened concrete - Testing porosity and density, Paris, France, 2010. Bertron A, Duchesne J (2013) Attack of cementitious materials by organic acids in agricultural and agrofood effluents. In: Performance of cement-based materials in aggressive aqueous environments, Springer, Dordrecht, 2013: pp 131–173. https://doi.org/10.1007/978-94-007-5413-3_6. Larreur-Cayol S, Bertron A, Escadeillas G (2011) Degradation of cement-based materials by various organic acids in agro-industrial waste-waters. Cem Concr Res 41:882–892. https://doi.org/10.1016/j.cemconres.2011.04.007 Hill DT, Holmberg RD (1988) Long chain volatile fatty acid relationships in anaerobic digestion of swine waste. Biol Wastes 23:195–214. https://doi.org/10.1016/0269-7483(88)90034-1 Parawira W, Murto M, Read JS, Mattiasson B (2004) Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste. J Chem Technol Biotechnol 79:673–677. https://doi.org/10.1002/jctb.1012 Viéitez ER, Ghosh S (1999) Biogasification of solid wastes by two-phase anaerobic fermentation. Biomass Bioenergy 16:299–309. https://doi.org/10.1016/S0961-9534(99)00002-1 C. Voegel, A. Bertron, B. Erable, Microbially induced degradation of cement-based materials in biogas production industrial process, in: Sao Paulo, 2014. Karthikeyan OP, Visvanathan C (2013) Bio-energy recovery from high-solid organic substrates by dry anaerobic bio-conversion processes: a review. Rev Environ Sci Biotechnol 12:257–284. https://doi.org/10.1007/s11157-012-9304-9 Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48:901–911. https://doi.org/10.1016/j.procbio.2013.04.012 Deublein D, Steinhauser A (2011) Biogas from waste and renewable resources: an introduction. Wiley Rasi S (2009) Biogas composition and upgrading to biomethane, Jyväskylä studies in biological and environmental science. University of Jyväskylä, 2009. https://jyx.jyu.fi/handle/123456789/20353 Rasi S, Veijanen A, Rintala J (2007) Trace compounds of biogas from different biogas production plants. Energy 32:1375–1380. https://doi.org/10.1016/j.energy.2006.10.018 Bertron A, Duchesne J, Escadeillas G (2005) Accelerated tests of hardened cement pastes alteration by organic acids: analysis of the pH effect. Cem Concr Res 35:155–166. https://doi.org/10.1016/j.cemconres.2004.09.009 Pavlík V (1994) Corrosion of hardened cement paste by acetic and nitric acids part II: formation and chemical composition of the corrosion products layer. Cem Concr Res 24:1495–1508. https://doi.org/10.1016/0008-8846(94)90164-3 Escadeillas G (2013) Ammonium nitrate attack on cementitious materials. In: Performance of cement-based materials in aggressive aqueous environments, Springer, Dordrecht, 2013, pp 113–130. https://doi.org/10.1007/978-94-007-5413-3_5. Carde C, Escadeillas G, François R (1997) Use of ammonium nitrate solution to simulate and accelerate the leaching of cement pastes due to deionized water. Mag Concr Res 49:295–301 Carde C, François R (1997) Effect of the leaching of calcium hydroxide from cement paste on mechanical and physical properties. Cem Concr Res 27:539–550. https://doi.org/10.1016/S0008-8846(97)00042-2 Perlot C, Bourbon X, Carcasses M, Ballivy G (2007) The adaptation of an experimental protocol to the durability of cement engineered barriers for nuclear waste storage. Mag Concr Res 59:311–322. https://doi.org/10.1680/macr.2007.59.5.311 Gérard B, Le Bellego C, Bernard O (2002) Simplified modelling of calcium leaching of concrete in various environments. Mater Struct 35:632–640. https://doi.org/10.1007/BF02480356 Heukamp FH, Ulm F-J, Germaine JT (2001) Mechanical properties of calcium-leached cement pastes: Triaxial stress states and the influence of the pore pressures. Cem Concr Res 31:767–774. https://doi.org/10.1016/S0008-8846(01)00472-0 Wan K, Li Y, Sun W (2013) Experimental and modelling research of the accelerated calcium leaching of cement paste in ammonium nitrate solution. Constr Build Mater 40:832–846. https://doi.org/10.1016/j.conbuildmat.2012.11.066 Kurumisawa K, Haga K, Hayashi D, Owada H (2017) Effects of calcium leaching on diffusion properties of hardened and altered cement pastes. Phys Chem Earth Parts ABC 99:175–183. https://doi.org/10.1016/j.pce.2017.03.007 Kurumisawa K, Nawa T, Owada H, Shibata M (2013) Deteriorated hardened cement paste structure analyzed by XPS and 29Si NMR techniques. Cem Concr Res 52:190–195. https://doi.org/10.1016/j.cemconres.2013.07.003 Baroghel-Bouny V, Capra B, Laurens D (2008) La durabilité des armatures et du béton d’enrobage, in: Durabilité Bétons, Presse de l’ENCP, pp 303–385 Shah V, Scrivener K, Bhattacharjee B, Bishnoi S (2018) Changes in microstructure characteristics of cement paste on carbonation. Cem Concr Res 109:184–197. https://doi.org/10.1016/j.cemconres.2018.04.016 Knez S, Klinar D, Golob J (2006) Stabilization of PCC dispersions prepared directly in the mother-liquid after synthesis through the carbonation of (hydrated) lime. Chem Eng Sci 61:5867–5880. https://doi.org/10.1016/j.ces.2006.05.016 Morandeau A (2013) Carbonatation atmosphérique des systèmes cimentaires à faible teneur en portlandite, Thèse, Paris Est, 2013. http://www.theses.fr/2013PEST1032 Sawada K (1997) The mechanisms of crystallization and transformation of calcium carbonates. Pure Appl Chem 69:921–928. https://doi.org/10.1351/pac199769050921 Cailleau P, Jacquin C, Dragone D, Girou A, Roques H, Humbert L (1979) Influence des ions étrangers et de la matière organique sur la cristallisation des carbonates de calcium. Rev Inst Fr Pétrole 34:83–112. https://doi.org/10.2516/ogst:1979003 El Fil H (2019) Contribution à l’étude des eaux géothermales du sud tunisien: étude des mécanismes et de la prévention des phénomènes d’entartrage, Thèse, INSA Toulouse, 1999. http://www.theses.fr/1999ISAT0002 Zidoune M (2019) Contribution à la connaissance des mécanismes d’entartrage par diverses méthodes électrochimiques, Thèse, Paris 6, 1996. http://www.theses.fr/1996PA066445 Jimoh OA, Ariffin KS, Hussin HB, Temitope AE (2018) Synthesis of precipitated calcium carbonate: a review. Carbonates Evaporites 33:331–346. https://doi.org/10.1007/s13146-017-0341-x Kitamura M, Konno H, Yasui A, Masuoka H (2002) Controlling factors and mechanism of reactive crystallization of calcium carbonate polymorphs from calcium hydroxide suspensions. J Cryst Growth 236:323–332. https://doi.org/10.1016/S0022-0248(01)02082-6 Oral ÇM, Ercan B (2018) Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles. Powder Technol 339:781–788. https://doi.org/10.1016/j.powtec.2018.08.066 Tai CY, Chen F-B (1998) Polymorphism of CaCO3, precipitated in a constant-composition environment. AIChE J 44:1790–1798. https://doi.org/10.1002/aic.690440810 Chalhoub C, François R, Carcasses M (2020) Effect of Cathode-Anode distance and electrical resistivity on macrocell corrosion currents and cathodic response in cases of chloride induced corrosion in reinforced concrete structures. Constr Build Mater 245:118337. https://doi.org/10.1016/j.conbuildmat.2020.118337 Li N, Farzadnia N, Shi C (2017) Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cem Concr Res 100:214–226. https://doi.org/10.1016/j.cemconres.2017.07.008 Nedeljković M, Šavija B, Zuo Y, Luković M, Ye G (2018) Effect of natural carbonation on the pore structure and elastic modulus of the alkali-activated fly ash and slag pastes. Constr Build Mater 161:687–704. https://doi.org/10.1016/j.conbuildmat.2017.12.005 Puertas F, Palacios M, Vázquez T (2006) Carbonation process of alkali-activated slag mortars. J Mater Sci 41:3071–3082. https://doi.org/10.1007/s10853-005-1821-2 Sanjuán MÁ, Estévez E, Argiz C, del Barrio D (2018) Effect of curing time on granulated blast-furnace slag cement mortars carbonation. Cem Concr Compos 90:257–265. https://doi.org/10.1016/j.cemconcomp.2018.04.006 Poyet S, Bescop PL, Pierre M, Chomat L, Blanc C (2012) Accelerated leaching of cementitious materials using ammonium nitrate (6M): influence of test conditions. Eur J Environ Civ Eng. https://doi.org/10.1080/19648189.2012.667712 Bertron A (2014) Understanding interactions between cementitious materials and microorganisms: a key to sustainable and safe concrete structures in various contexts. Mater Struct 47:1787–1806. https://doi.org/10.1617/s11527-014-0433-1 Gallert C, Winter J (2005) Bacterial metabolism in wastewater treatment systems. In: Jördening H-J, Winter J (eds) Environment of biotechnology—concept Application, 1st ed., John Wiley & Sons, Ltd, 2005. https://doi.org/10.1002/3527604286