Thiết kế phối trộn trong phòng thí nghiệm của hỗn hợp nhũ tương bitum lạnh có chứa nhựa đường tái chế và chủng aggregates nguyên chất

Buildings - Tập 8 Số 12 - Trang 177
Kiplagat Chelelgo1, Zachary C. Abiero Gariy2, Stanley Muse Shitote3
1Department of Civil Engineering, Pan African University, Institute for Basic Sciences, Technology and Innovation, P.O. Box 62000-00200, Nairobi, Kenya
2Department of Civil, Construction & Environmental Engineering, Jomo Kenyatta University of Agriculture & Technology, P.O. Box 5505-00100, Nairobi, Kenya
3Department of Civil Engineering, Rongo University (RU), P.O. Box 103-40404, Rongo, Kenya

Tóm tắt

Nhũ tương bitum đường, đặc biệt là những nhũ tương kết hợp với các aggregates thứ cấp và biên, là những lựa chọn hiệu quả về năng lượng, thân thiện với môi trường và bền vững cho các hỗn hợp nhựa đường nóng. Nghiên cứu này nhằm so sánh các tính chất kỹ thuật của nhũ tương bitum nhựa đường hoàn toàn được tạo thành từ các aggregates nguyên chất với một nhũ tương bao gồm 55% nhựa đường tái chế và 45% aggregates nguyên chất. Các aggregates được kết dính bằng một nhũ tương bitum cationic chậm, bao gồm 65% bitum nền và 35% nước. Các mẫu Marshall được tạo hình tại các mức nước trước trộn và hàm lượng nhũ tương bitum khác nhau được ủ trong khuôn trong 24 giờ trước khi được lấy ra khỏi khuôn và ủ thêm 72 giờ ở 40 °C. Mật độ khô, độ rỗng và độ bền kéo gián tiếp của các mẫu đã ủ được xác định ở trạng thái khô và ngâm nước. Hỗn hợp aggregates nguyên chất, tại hàm lượng chất liên kết tối ưu 6.1%, có tỷ lệ độ bền kéo là 1.3 với các giá trị tương ứng về không gian khí và khả năng hấp thụ ẩm là 10.1% và 0.92%, tương ứng. Tương tự, hỗn hợp nhựa đường tái chế với hàm lượng chất liên kết tối ưu 6.2% có tỷ lệ độ bền kéo là 1.03, với các giá trị không gian khí và khả năng hấp thụ ẩm tương ứng là 7.9% và 0.38%, tương ứng. So với hỗn hợp nguyên chất, hỗn hợp nhựa đường tái chế có ít không gian khí hơn và giá trị hấp thụ ẩm thấp hơn với lợi ích chung là tăng cường khả năng kháng hư hỏng do ẩm.

Từ khóa


Tài liệu tham khảo

Salomon, D.R. (2006). Asphalt Emulsion Technology, Transportation Research Board.

Ojum, 2014, An investigation into the Effects of Accelerated Curing on Cold Recycled Bituminous Mixes, Asphalt Pavements—Proceedings of the International Conference on Asphalt Pavements, ISAP 2014, Volume 2, 1177

Oqueli, C.L. (1997). Laboratory Specimen Preparation for Cold Recycled Asphalt, Victoria University of Technology.

Willis, R., and Tran, N.H. (2015). Bring Life Back to Aging. Asphalt Pavement Magazine, National Asphalt Pavement Association.

Thanaya, 2009, A laboratory study on cold-mix, cold-lay emulsion mixtures, Proc. Inst. Civ. Eng. Transp., 162, 47

Kandhal, R.B., and Mallick, P.S. (1997). Pavement Recycling Guidelines for State and Local Governments—Participant’s Reference Book, National Center for Asphalt Technology. Report No. FHWA-SA-98-042.

Thanaya, 2007, Review and recommendation of cold asphalt emulsion mixtures CAEMS design, Civ. Eng. Dimens., 9, 49

Oke, O.L., Parry, T., Thom, N.H., Parry, T., and Thom, N.H. (2014, January 16–17). Fatigue Characteristics of Cold Recycled Bituminous Emulsion Mixtures Using the Nottingham Asphalt Tester in the ITFT Mode of Testing. Proceedings of the Second International Conference on Advances in Civil, Structural and Mechanical Engineering—CSM 2014, Birmingham, UK.

Issmael, 2016, Sustainability of Cold Recycled Mixture with High Reclaimed Asphalt Pavement Percentages, Appl. Res. J., 2, 344

Barbod, B., and Shalaby, A. (October, January 28). Laboratory Performance of Asphalt Emulsion Treated Base for Cold Regions Applications. Proceedings of the 2014 Transportation Association of Canada (TAC) Conference, Montreal, QC, Canada.

Gao, 2012, Mixed-mode fracture characteristics of cold recycling mixes with emulsified asphalt, Appl. Mech. Mater., 204–208, 1678, 10.4028/www.scientific.net/AMM.204-208.1678

Tebaldi, 2014, Synthesis of standards and procedures for specimen preparation and in-field evaluation of cold-recycled asphalt mixtures, Road Mater. Pavement Des., 15, 272, 10.1080/14680629.2013.866707

Twagira, L.J., Jenkins, M.E., and Ebels, K.J. (2006, January 12–17). Characterisation of Fatigue Performance of Selected Cold Bituminous Mixes. Proceedings of the 10th International Conference on Asphalt Pavements, Quebec City, QC, Canada.

Tia, 1983, Use of asphalt emulsion and foamed asphalt in cold-recycled asphalt paving mixtures, Transp. Res. Rec., 898, 315

Oke, O.O. (2010). A Study on The Development of Guidelines for the Production of Bitumen Emulsion, The University of Nottingham.

Serfass, 2004, Influence of curing on cold mix mechanical performance, Mater. Struct. Constr., 37, 365, 10.1007/BF02481685

Asphalt Academy (2009). Technical Guideline: Bitumen Stabilised Materials—A Guide for the Design and Construction of Bitumen Emulsion and Foamed Bitumen Stabilised Materials, Asphalt Academy. [2nd ed.].

Jitareekul, P. (2009). An Investigation into Cold In-Place Recycling of Asphalt Pavements, The University of Nottingham.

Ndinyo, 2013, Suitability of reclaimed asphalt concrete as a cold mix surfacing material for low volume roads, Int. J. Eng. Adv. Technol., 3, 354

BSI (2005). BS EN 13808: Bitumen and Bituminous Binders. Framework for Specifying Cationic Bituminous Emulsions, British Standards Institution.

Wirtgen (2012). Wirtgen Cold Recycling Technology, Wirtgen GmbH.

Nassar, 2018, Characterisation of high-performance cold bitumen emulsion mixtures for surface courses, Int. J. Pavement Eng., 19, 509, 10.1080/10298436.2016.1176165

Oruc, 2007, Effect of cement on emulsified asphalt mixtures, J. Mater. Eng. Perform., 16, 578, 10.1007/s11665-007-9095-2

Ling, 2014, Evaluating moisture susceptibility of cold-mix asphalt, Transp. Res. Rec. J. Transp. Res. Board, 244, 60, 10.3141/2446-07

ASTM (2012). ASTM C127-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM.

BSI (2002). BS 812-103.1 Testing Aggregates, Part 103: Methods for Determination of Particle Size Distribution, British Standards Institution.

BSI (2012). BS EN 12697-1:2012: Bituminous Mixtures. Test Methods for Hot Mix Asphalts. Soluble Binder Content, BSI.

BSI (2013). BS EN: 12697-3:2013-Bituminous mixtures—Test Methods for Hot Mix Asphalt: Part 3: Bitumen Recovery: Rotary Evaporator, BSI.

BSI (2007). BS 2000:49-2007 Bitumen and Bituminous Binders—Determination of Needle Penetration, BSI.

BSI (2015). BS EN 1427: Bitumen and Bituminous Binders-Determination of the Softening Point: Ring and Ball Method, BSI.

ASTM (2016). ASTM D6934-08: Standard Test Method for Residue by Evaporation of Emulsified Asphalt, ASTM.

Asphalt Institute (1977). Asphalt Cold-Mix Manual: Manual Series No. 14 (MS 14), Asphalt Institute.

Thanaya, 2007, Evaluating and improving the performance of cold asphalt emulsion mixes, Civ. Eng. Dimens., 9, 64

Thanaya, I.N.A. (2010, January 13–14). Utilization of Sustainable Materials in Cold Asphalt Emulsion Mixture for Lightly Trafficked Road. Proceedings of the 6th International Student Conference at Ibaraki University ISCIU6, Ibaraki, Japan.

Moloto, K.P. (2010). Accelerated Curing Protocol for Bitumen Stabilized Materials, Stellenbosch University.

Asphalt Institute (2004). The Basic Emulsion Manual, Manual Series No. 19 (MS-19), Asphalt Institute. [3rd ed.].

Oke, 2013, Some guidelines for the production and use of cold recycled asphalts in hot tropical regions, Int. J. Dev. Sustain., 2, 998

Ebels, L. (2008). Characterisation of Material Properties and Behaviour of Cold Bituminous Mixtures for Road Pavements, Stellenbosch University.

Ibrahim, H.E.-S.M. (1998). Assessment and Design of Emulsion-Aggregate Mixtures for Use in Pavements, The University of Nottingham.

BSI (1990). BS 1377:1990-Compaction Using Vibrating Hammer, BSI.

Katman, 2012, Tensile strength of reclaimed asphalt pavement, Int. J. Civ. Environ. Eng., 12, 14

Iwański, M., and Chomicz-kowalska, A. (2014, January 22–23). Application of Recycled Aggregates to the Road Base Mixtures with Foamed Bitumen in the Cold Recycling Technology. Proceedings of the 9th International Conference on Environmental Engineering, Vilnius, Lithuania.

ASTM (2012). ASTM D6931-12: Standard Test Method for Indirect Tensile (IDT) Strength of Bituminous Mixtures, ASTM.

Dash, S.S. (2013). Effect of Mix Parameters on Performance and Design of Cold Mix Asphalt, National Institute of Technology.

AASHTO (2016). AASHTO T 166-16: Standard Method of Test for Bulk Specific Gravity (Gmb) of Compacted Hot Mix Asphalt (HMA) Using Saturated Surface-Dry Specimens, AASHTO.

Du, 2015, Performance characteristic of cold recycled mixture with asphalt emulsion and chemical additives, Adv. Mater. Sci. Eng., 2015, 1

2017, Fatigue life comparison of recycled cold mixes with foamed bitumen and with bitumen emulsion, Procedia Eng., 172, 135, 10.1016/j.proeng.2017.02.035

Ojum, C.K. (2015). The Design and Optimisation of Cold Asphalt Emulsion Mixtures, The University of Nottingham.

Maccarrone, S., Holleran, G., Leonard, D.J., and Hey, S. (1994, January 15–19). Pavement Recycling Using Foamed Asphalt. Proceedings of the 17th ARRB Conference, Gold Coast, Australia.

Kennedy, T.W., and Anagnos, J.N. (1984). Wet-Dry Indirect Tensile Test for Evaluating Moisture Susceptability of Asphalt Mixtures, Center for Transoportation Research, University of Texas at Austin.

Oliviero Rossi, C., Teltayev, B., and Angelico, R. (2017). Adhesion promoters in bituminous road materials: A review. Appl. Sci., 7.