Label-free isolation of circulating tumor cells using negative lateral dielectrophoresis-assisted inertial microfluidics

Microfluidics and Nanofluidics - Tập 27 Số 8 - 2023
Aliasghar Mohammadi1, Morteza Safari1, Mehdi Rahmanian2
1Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
2Biomaterials and Tissue Engineering Research Group, Interdisciplinary Technologies Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aghaamoo M, Aghilinejad A, Chen X, Xu J (2019) On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells. Electrophoresis 40(10):1486–1493

Au SH, Edd J, Stoddard AE, Wong KH, Fachin F, Maheswaran S, Haber DA, Stott SL, Kapur R, Toner M (2017) Microfluidic isolation of circulating tumor cell clusters by size and asymmetry. Sci Rep 7(1):1–10

Bazaz SR, Mihandust A, Salomon R, Joushani HAN, Li W, Amiri HA, Mirakhorli F, Zhand S, Shrestha J, Miansari M (2022) Zigzag microchannel for rigid inertial separation and enrichment (Z-RISE) of cells and particles. Lab Chip 22(21):4093–4109

Buican TN, Smyth MJ, Crissman HA, Salzman GC, Stewart CC, Martin JC (1987) Automated single-cell manipulation and sorting by light trapping. Appl Opt 26(24):5311–5316

Cha H, Fallahi H, Dai Y, Yuan D, An H, Nguyen N-T, Zhang J (2021) Multiphysics microfluidics for cell manipulation and separation: a review. Lab Chip 22(3):423–444. https://doi.org/10.1039/D1LC00869B

Di Carlo D (2009) Inertial microfluidics. Lab Chip 9(21):3038–3046

Di Carlo D, Edd JF, Humphry KJ, Stone HA, Toner M (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102(9):094503

Erdem K, Ahmadi VE, Kosar A, Kuddusi L (2020) Differential sorting of microparticles using spiral microchannels with elliptic configurations. Micromachines 11(4):412

Esmaeilsabzali H, Beischlag TV, Cox ME, Parameswaran AM, Park EJ (2013) Detection and isolation of circulating tumor cells: principles and methods. Biotechnol Adv 31(7):1063–1084

Fallahi H, Zhang J, Phan H-P, Nguyen N-T (2019) Flexible microfluidics: fundamentals, recent developments, and applications. Micromachines 10(12):830

Fetah KL, DiPardo BJ, Kongadzem EM, Tomlinson JS, Elzagheid A, Elmusrati M, Khademhosseini A, Ashammakhi N (2019) Cancer modeling-on-a-chip with future artificial intelligence integration. Small 15(50):1901985

Gertler R, Rosenberg R, Fuehrer K, Dahm M, Nekarda H, Siewert JR (2003) Detection of circulating tumor cells in blood using an optimized density gradient centrifugation, molecular staging of cancer. Springer, pp 149–155

Ghadami S, Kowsari-Esfahan R, Saidi MS, Firoozbakhsh K (2017) Spiral microchannel with stair-like cross section for size-based particle separation. Microfluid Nanofluid 21(7):1–10

Gijsen FJ, van de Vosse FN, Janssen J (1999) The influence of the non-Newtonian properties of blood on the flow in large arteries: steady flow in a carotid bifurcation model. J Biomech 32(6):601–608

Goh KY, Lim W-T (2018) Profiling circulating tumour cells for clinical applications. Liquid biopsy. IntechOpen

Guan X (2015) Cancer metastases: challenges and opportunities. Acta Pharmaceutica Sinica B 5(5):402–418

Guan G, Wu L, Bhagat AA, Li Z, Chen PC, Chao S, Ong CJ, Han J (2013) Spiral microchannel with rectangular and trapezoidal cross-sections for size based particle separation. Sci Rep 3(1):1–9

Habli Z, AlChamaa W, Saab R, Kadara H, Khraiche ML (2020) Circulating tumor cell detection technologies and clinical utility: challenges and opportunities. Cancers 12(7):1930

Hao S-J, Wan Y, Xia Y-Q, Zou X, Zheng S-Y (2018) Size-based separation methods of circulating tumor cells. Adv Drug Deliv Rev 125:3–20

Ho B, Leal L (1974) Inertial migration of rigid spheres in two-dimensional unidirectional flows. J Fluid Mech 65(2):365–400

Hou HW, Warkiani ME, Khoo BL, Li ZR, Soo RA, Tan DS-W, Lim W-T, Han J, Bhagat AAS, Lim CT (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3(1):1–8

Huang D, Xiang N (2021) Rapid and precise tumor cell separation using the combination of size-dependent inertial and size-independent magnetic methods. Lab Chip 21(7):1409–1417

Jeon H, Kwon T, Yoon J, Han J (2022) Engineering a deformation-free plastic spiral inertial microfluidic system for CHO cell clarification in biomanufacturing. Lab Chip 22(2):272–285

Khan M, Chen X (2022) Numerical study of dielectrophoresis-modified inertial migration for overlapping sized cell separation. Electrophoresis 43(7–8):879–891

Kim U, Oh B, Ahn J, Lee S, Cho Y (2022) Inertia–acoustophoresis hybrid microfluidic device for rapid and efficient cell separation. Sensors 22(13):4709

Lee MG, Shin JH, Bae CY, Choi S, Park J-K (2013) Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Anal Chem 85(13):6213–6218

Lim H, Back SM, Hwang MH, Lee D-H, Choi H, Nam J (2019) Sheathless high-throughput circulating tumor cell separation using viscoelastic non-Newtonian fluid. Micromachines 10(7):462

Liu Y, Zhao W, Cheng R, Hodgson J, Egan M, Pope CNC, Nikolinakos PG, Mao L (2021) Simultaneous biochemical and functional phenotyping of single circulating tumor cells using ultrahigh throughput and recovery microfluidic devices. Lab Chip 21(18):3583–3597

Mach AJ, Kim JH, Arshi A, Hur SC, Di Carlo D (2011) Automated cellular sample preparation using a centrifuge-on-a-chip. Lab Chip 11(17):2827–2834

Mishra A, Dubash TD, Edd JF, Jewett MK, Garre SG, Karabacak NM, Rabe DC, Mutlu BR, Walsh JR, Kapur R (2020) Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Proc Natl Acad Sci 117(29):16839–16847

Mohammadi A (2015) Transport in droplet-hydrogel composites: response to external stimuli. Colloid Polym Sci 293(3):941–962

Ozkumur E, Shah AM, Ciciliano JC, Emmink BL, Miyamoto DT, Brachtel E, Yu M, Chen P-I, Morgan B, Trautwein J (2013) Inertial focusing for tumor antigen–dependent and–independent sorting of rare circulating tumor cells. Sci Transl Med 5(179):179ra47-179ra47

Pødenphant M, Ashley N, Koprowska K, Mir KU, Zalkovskij M, Bilenberg B, Bodmer W, Kristensen A, Marie R (2015) Separation of cancer cells from white blood cells by pinched flow fractionation. Lab Chip 15(24):4598–4606

Rahmani A, Mohammadi A, Kalhor HR (2018) A continuous flow microfluidic device based on contactless dielectrophoresis for bioparticles enrichment. Electrophoresis 39(3):445–455

Sharma S, Zhuang R, Long M, Pavlovic M, Kang Y, Ilyas A, Asghar W (2018) Circulating tumor cell isolation, culture, and downstream molecular analysis. Biotechnol Adv 36(4):1063–1078

Shrestha J, Bazaz SR, Ding L, Vasilescu S, Idrees S, Söderström B, Hansbro PM, Ghadiri M, Warkiani ME (2023) Rapid separation of bacteria from primary nasal samples using inertial microfluidics. Lab Chip 23(1):146–156

Siegal R, Miller KD, Jemal A (2014) Cancer statistics, 2012. CA Cancer J Clin 64(1):9–29

Sleeboom JJ, Eslami Amirabadi H, Nair P, Sahlgren CM, Den Toonder JM (2018) Metastasis in context: modeling the tumor microenvironment with cancer-on-a-chip approaches. Dis Model Mech 11(3):dmm033100

Sorour Amini H, Mohammadi A (2023) Microparticle separation using dielectrophoresis-assisted inertial microfluidics: a GPU-accelerated immersed boundary-lattice Boltzmann simulation. Phys Rev E 107(3):035307

Sun J, Li M, Liu C, Zhang Y, Liu D, Liu W, Hu G, Jiang X (2012) Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip 12(20):3952–3960

Undvall Anand E, Magnusson C, Lenshof A, Ceder Y, Lilja H, Laurell T (2021) Two-step acoustophoresis separation of live tumor cells from whole blood. Anal Chem 93(51):17076–17085

Wang L, Lu J, Marchenko SA, Monuki ES, Flanagan LA, Lee AP (2009) Dual frequency dielectrophoresis with interdigitated sidewall electrodes for microfluidic flow-through separation of beads and cells. Electrophoresis 30(5):782–791

Warkiani ME, Guan G, Luan KB, Lee WC, Bhagat AAS, Chaudhuri PK, Tan DS-W, Lim WT, Lee SC, Chen PC (2014) Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab Chip 14(1):128–137

Xiang N, Ni Z (2022) Inertial microfluidics: current status, challenges, and future opportunities. Lab Chip 22(24):4792–4804. https://doi.org/10.1039/D2LC00722C

Yafouz B, Kadri NA, Ibrahim F (2014) Dielectrophoretic manipulation and separation of microparticles using microarray dot electrodes. Sensors 14(4):6356–6369

Yang C, Xia B-R, Jin W-L, Lou G (2019) Circulating tumor cells in precision oncology: clinical applications in liquid biopsy and 3D organoid model. Cancer Cell Int 19(1):1–13

Zhang J, Yan S, Sluyter R, Li W, Alici G, Nguyen N-T (2014) Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel. Sci Rep 4(1):1–9

Zhang J, Yuan D, Zhao Q, Yan S, Tang S-Y, Tan SH, Guo J, Xia H, Nguyen N-T, Li W (2018) Tunable particle separation in a hybrid dielectrophoresis (DEP)-inertial microfluidic device. Sens Actuators B Chem 267:14–25

Zhang H, Chang H, Neuzil P (2019) DEP-on-a-chip: Dielectrophoresis applied to microfluidic platforms. Micromachines 10(6):423

Zhao W, Zhu T, Cheng R, Liu Y, He J, Qiu H, Wang L, Nagy T, Querec TD, Unger ER (2016) Label-free and continuous-flow ferrohydrodynamic separation of HeLa cells and blood cells in biocompatible ferrofluids. Adv Func Mater 26(22):3990–3998

Zheng S, Lin H, Liu J-Q, Balic M, Datar R, Cote RJ, Tai Y-C (2007) Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. J Chromatogr A 1162(2):154–161

Zhou J, Papautsky I (2013) Fundamentals of inertial focusing in microchannels. Lab Chip 13(6):1121–1132

Zhu S, Jiang F, Han Y, Xiang N, Ni Z (2020) Microfluidics for label-free sorting of rare circulating tumor cells. Analyst 145(22):7103–7124