Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Nền tảng cảm biến kép không nhãn cho việc giám sát ciprofloxacin ở mức độ dấu vết bằng cách sử dụng chấm carbon sinh học và đánh giá khả năng chống oxy hóa cũng như kháng khuẩn của nó
Tóm tắt
Ciprofloxacin, một loại kháng sinh có tính thuyết phục, được sử dụng rộng rãi cho bệnh nhân và việc thải ra quá mức của nó đã tạo ra sự quan tâm lớn giữa các nhà nghiên cứu trong việc phát hiện nó trong nguồn nước. Do đó, công trình hiện tại sử dụng ưu điểm của các chấm carbon được tổng hợp từ lá Ocimum sanctum như một chiến lược hai chiều kinh tế và thuận tiện để phát hiện ciprofloxacin qua phương pháp điện hóa và huỳnh quang. Các nghiên cứu về khả năng quang ổn định, kích thước, hình thái, và quang học của các chấm carbon đã được thử nghiệm để nâng cao khả năng cảm biến của chúng. Hành vi phụ thuộc vào kích thích dựa trên photoluminescence xuất sắc với độ phát quang lượng tử đạt 46,7% và không yêu cầu bất kỳ thay đổi bề mặt nào để cải thiện tính huỳnh quang và các thuộc tính điện hóa của chúng đã hỗ trợ thêm cho việc sử dụng các chấm carbon được chuẩn bị trong việc giám sát ciprofloxacin ở mức độ dấu vết. Cường độ phát xạ huỳnh quang và dòng điện đỉnh đã được cải thiện nhiều lần qua việc ứng dụng các chấm carbon nguồn gốc từ Ocimum sanctum. Hiệu ứng đồng bộ của các chấm carbon đã tạo ra mối quan hệ tuyến tính giữa dòng điện đỉnh/cường độ phát xạ trong khoảng từ 0 đến 250 μM ciprofloxacin và giá trị giới hạn phát hiện thấp nhất được tìm thấy là 0,293 và 0,0822 μM với các phương pháp huỳnh quang và điện hóa, tương ứng. Cảm biến đã chứng minh tính ứng dụng tuyệt vời cho việc ước lượng ciprofloxacin và hoạt động như một cảm biến kép hiệu suất cao cho các ứng dụng tiếp theo.
Từ khóa
#ciprofloxacin #chấm carbon #cảm biến kép #điện hóa #huỳnh quang #nguồn nước #khả năng chống oxy hóa #kháng khuẩnTài liệu tham khảo
Shan L, Ming G, Xiaohua P, Wenjie L, Jingjie W, Huaxin L, Hua T (2022) Association between fluoroquinolone exposure and children's growth and development: a multisite biomonitoring-based study in northern China. Environ Res 214:113924. https://doi.org/10.1016/j.envres.2022.113924
Nakase K, Yui S, Hidemasa N, Norihisa N (2016) Emergence of fluoroquinolone-resistant Propionibacterium acnes caused by amino acid substitutions of DNA gyrase but not DNA topoisomerase IV. Anaerobe 42:166–171. https://doi.org/10.1016/j.anaerobe.2016.10.012
Piccinelli G, Gargiulo F, Biscaro V, Caccuri F, Caruso A, Francesco MAD (2017) Analysis of mutations in DNA gyrase and topoisomerase IV of Ureaplasma urealyticum and Ureaplasma parvum serovars resistant to fluoroquinolones. Infect Genet and Evol 47:64–67. https://doi.org/10.1016/j.meegid.2016.11.019
Sodhi KK, Singh DK (2021) Insight into the fluoroquinolone resistance, sources, ecotoxicity, and degradation with special emphasis on ciprofloxacin. J Water Process Eng 43:102218. https://doi.org/10.1016/j.jwpe.2021.102218
Darabi Z, Niakan M, Khaledi M, Afkhami H, Soltanimoghadam F (2022) The investigation of P1 gene in Mycoplasma pneumonia isolated from atypic pneumonia by molecular methods, determine IgG antibody and MIC to ciprofloxacin antibiotic. New Microbe New Infect 46:100954. https://doi.org/10.1016/j.nmni.2022.100954
Yang P, Luo J, Wang Z, Zhang L, Xie X, Shi Q, Zhang X (2022) Synthesis and in vitro antibacterial activity of N-acylarylhydrazone-ciprofloxacin hybrids as novel fluoroquinolone derivatives. J Mol Struct 1262:133007. https://doi.org/10.1016/j.molstruc.2022.133007
Hasan MDR, Chowdhury SM, Aziz MA, Shahriar A, Ahmed H, Khan MA, Mahmud S, Emran TB (2021) In silico analysis of ciprofloxacin analogs as inhibitors of DNA gyrase of Staphylococcus aureus. Informat Med Unlocked 26:100748. https://doi.org/10.1016/j.imu.2021.100748
Shi C, Ignjatović J, Wang J, Guo Y, Zhang L, Cvijić S, Cun D, Yang M (2022) Evaluating the pharmacokinetics of intrapulmonary administered ciprofloxacin solution for respiratory infections using in vivo and in silico PBPK rat model studies. Chin Chem Lett. https://doi.org/10.1016/j.cclet.2022.04.061
Bhagat C, Kumar M, Tyagi VK et al (2020) Proclivities for prevalence and treatment of antibiotics in the ambient water: a review. NPJ Clean Water 3:42. https://doi.org/10.1038/s41545-020-00087-x
Souza CCD, Cunha C, Alves GF, Lisboa TP, Matos MAC, Matos RC (2022) Low-cost paper-based electrochemical sensor for the detection of ciprofloxacin in honey and milk samples. J Food Compos Anal 112:104700. https://doi.org/10.1016/j.jfca.2022.104700
Huang QD, Lv CH, Yuan XL, He M, Lai JP, Sun H (2021) A novel fluorescent optical fiber sensor for highly selective detection of antibiotic ciprofloxacin based on replaceable molecularly imprinted nanoparticles composite hydrogel detector. Sens Actuators B- Chem 328:129000. https://doi.org/10.1016/j.snb.2020.129000
Yu F, Bai X, Liang M, Ma J (2022) HKUST-1-Derived Cu@ Cu (I)@ Cu (II)/Carbon adsorbents for ciprofloxacin removal with high adsorption performance. Sep Purif Technol 288:120647. https://doi.org/10.1016/j.seppur.2022.120647
Cuprys A, Thomson P, Ouarda Y, Suresh G, Rouissi T, Brar SK, Drogui P, Surampalli RY (2020) Ciprofloxacin removal via sequential electro-oxidation and enzymatic oxidation. J Hazard Mater 389:121890. https://doi.org/10.1016/j.jhazmat.2019.121890
Haleem FMA, Rizk MS, Badr IHA (2017) Potentiometric determination of ciprofloxacin in physiological fluids using carbon paste and nano-composite carbon paste electrodes. Electroanalysis 29:1172-1179. https://doi.org/10.1002/elan.201600735
Fu B, Zheng X, Li H, Ding L, Wang F, Guo D, Yang W, Pan Q (2021) A highly stable, rapid and sensitive fluorescent probe for ciprofloxacin based on Al3+-enhanced fluorescence of gold nanoclusters. Sens Actuators B-Chem 346:130502. https://doi.org/10.1016/j.snb.2021.130502
Liu X, Wang T, Lu Y, Wang W, Zhou Z, Yan Y (2019) Constructing carbon dots and CdTe quantum dots multi-functional composites for ultrasensitive sensing and rapid degrading ciprofloxacin. Sens Actuators B- Chem 289:242–251. https://doi.org/10.1016/j.snb.2019.03.094
Garbellini G, Rocha-Filho R, Fatibello-Filho O (2015) Voltammetric determination of ciprofloxacin in urine samples and its interaction with dsDNA on a cathodically pretreated boron-doped diamond electrode. Anal Methods 7:3411–3418. https://doi.org/10.1039/C5AY00625B
Wang B, Yan B (2020) A turn-on fluorescence probe Eu3+ functionalized Ga-MOF integrated with logic gate operation for detecting ppm-level ciprofloxacin (CIP) in urine. Talanta 208:120438. https://doi.org/10.1016/j.talanta.2019.120438
Munir F, Waseem MT, Khan ZA, Majeed S, Farooq U, Shahzad SA (2022) Synthesis of AIEE active triazine based new fluorescent and colorimetric probes: a reversible mechanochromism and sequential detection of picric acid and ciprofloxacin. J Photochem Photobiol 429:113921. https://doi.org/10.1016/j.jphotochem.2022.113921
Kaur H, Siwal SS, Chauhan G, Saini AK, Kumari A, Thakur VK (2022) Recent advances in electrochemical-based sensors amplified with carbon-based nanomaterials (CNMs) for sensing pharmaceutical and food pollutants. Chemosphere:135182. https://doi.org/10.1016/j.chemosphere.2022.135182
Singhal A, Sadique MA, Kumar N, Yadav S, Ranjan P, Parihar A, Khan R, Kaushik AK (2022) Multifunctional carbon nanomaterials decorated molecularly imprinted hybrid polymers for efficient electrochemical antibiotics sensing. J Environ Chem Eng:107703. https://doi.org/10.1016/j.jece.2022.107703
Yuan X, Lv W, Wang B, Yan C, Ma Q, Zheng B, Du J, Xiao D (2021) Silicon nanoparticles-based ratiometric fluorescence platform: real-time visual sensing to ciprofloxacin and Cu2+. Spectrochim Acta A: Mol Biomol Spectrosc 253:119599. https://doi.org/10.1016/j.saa.2021.119599
Manea Y, Kadaf Y, Khan AM, Wani AA, Qashqoosh MTA, Shahadat M, Salem MAS (2021) Hydrothermally synthesized mesoporous CS-g-PA@ TSM functional nanocomposite for efficient photocatalytic degradation of ciprofloxacin and treatment of metal ions. J Mol Liq 335:116144. https://doi.org/10.1016/j.molliq.2021.116144
Lv H, Yuan Y, Xu Q, H.i Liu, Y. Wang, and Y. Xia. (2018) Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor. J Power Sources 398:167–174. https://doi.org/10.1016/j.jpowsour.2018.07.059
Zhang H, Huang K, Ding L, Yang J, Yang Y, Liang F (2022) Electrochemical determination of paraquat using a glassy carbon electrode decorated with pillararene-coated nitrogen-doped carbon dots. Chin Chem Lett 33:1537–1540. https://doi.org/10.1016/j.cclet.2021.09.002
Saberi Z, Rezaei B, Ensafi AA (2019) Fluorometric label-free aptasensor for detection of the pesticide acetamiprid by using cationic carbon dots prepared with cetrimonium bromide. Microchimica Acta 186:1–7. https://doi.org/10.1007/s00604-019-3378-9
Chaudhary S, Kumari M, Chauhan P, Chaudhary GR (2021) Upcycling of plastic waste into fluorescent carbon dots: an environmentally viable transformation to biocompatible C-dots with potential prospective in analytical applications. Waste Manag 120:675–686. https://doi.org/10.1016/j.wasman.2020.10.038
Kumari R, Sahu SK (2022) A new insight into multicolor emissive carbon dots using Trachelospermum jasminoides leaves for the application of WLEDs. Colloid Surf A 647:128959. https://doi.org/10.1016/j.colsurfa.2022.128959
Chellasamy G, Arumugasamy SK, Govindaraju S, Yun K (2022) Green synthesized carbon quantum dots from maple tree leaves for biosensing of Cesium and electrocatalytic oxidation of glycerol. Chemosphere 287:131915. https://doi.org/10.1016/j.chemosphere.2021.131915
Chauhan P, Chaudhary S, Bhasin KK (2021) Usage of agarose gel waste for the high yield production of carbon dots and new insight into their toxicological screening. Process Biochem 102:229–239. https://doi.org/10.1016/j.procbio.2021.01.015
Vijeata A, Chaudhary GR, Chaudhary S, Umar A, Baskoutas S (2022) Carbon Dots derived from Ocimum sanctum for dapsone–protein interactions: a quantitative approach. J Nanostruct Chem 13:1–9. https://doi.org/10.1007/s40097-022-00503-3
Li Y, Li S, Wang Y, Wang J, Liu H, Liu X, Wang L, Liu X, Xue W, Ma N (2017) Electrochemical synthesis of phosphorus-doped graphene quantum dots for free radical scavenging. Phys Chem Chem Phys 19:11631–11638. https://doi.org/10.1039/C6CP06377B
Kang J, Kang D (2021) Effect of amino acid-derived nitrogen and/or sulfur doping on the visible-light-driven antimicrobial activity of carbon quantum dots: a comparative study. Chem Eng J 420:129990. https://doi.org/10.1016/j.cej.2021.129990
Khaliq T, Waseem MA, Lone AM, Hassan QP (2018) Oscimum sanctum extract inhibits growth of Gram positive and Gram negative bacterial strains. Microbial Pathogenesis 118:211–213. https://doi.org/10.1016/j.micpath.2018.03.040
Kalanidhi K, Nagaraaj P (2021) Facile and Green synthesis of fluorescent N-doped carbon dots from betel leaves for sensitive detection of picric acid and iron ion. J Photochem Photobiol 418:113369. https://doi.org/10.1016/j.jphotochem.2021.113369
Zygouri P, Spyrou K, Mitsari E, Barrio M, Macovez R, Patila M, Stamatis H (2020) A facile approach to hydrophilic oxidized fullerenes and their derivatives as cytotoxic agents and supports for nanobiocatalytic systems. Sci. rep. 10:1–13. https://doi.org/10.1038/s41598-020-65117-7
Liang Y, Yang H, Zhou B, Chen Y, Yang M, Wei K, Yan X, Kang C (2022) Waste tobacco leaves derived carbon dots for tetracycline detection: improving quantitative accuracy with the aid of chemometric model. Anal Chim Acta 1191:339269. https://doi.org/10.1016/j.aca.2021.339269
K kanthi Gudimella, Gedda G, Senthil Kumar P, Babu BK, Yamajala B, Rao BV, Singh PP, Kumar D, Sharma A (2022) Novel synthesis of fluorescent carbon dots from bio-based Carica papaya leaves: optical and structural properties with antioxidant and anti-inflammatory activities. Environ Res 204:111854. https://doi.org/10.1016/j.envres.2021.111854
Wen F, Li P, Meng H, Yan H, Huang X, Hao C, Su W (2022) Nitrogen-doped carbon dots/curcumin nanocomposite for combined Photodynamic/photothermal dual-mode antibacterial therapy. Photodiag Photodyn Ther:103033. https://doi.org/10.1016/j.pdpdt.2022.103033
Chaabani A, Jabrallah T, Belhadj N, Tahar (2022) Electrochemical oxidation of ciprofloxacin on COOH-functionalized multi-walled carbon nanotube–coated vitreous carbon electrode. Electrocatalysis 13:402–413. https://doi.org/10.1007/s12678-022-00725-7
Shen B, Wen X, Korshin GV (2018) Electrochemical oxidation of ciprofloxacin in two different processes: the electron transfer process on the anode surface and the indirect oxidation process in bulk solutions. Environ Sci Process Impacts 20:943–955. https://doi.org/10.1039/C8EM00122G
Wang Y, Sun X, Cai L, Wang H, Zhang B, Fang G, Wang S (2022) A “signal on/off” biomimetic electrochemiluminescence sensor using titanium carbide nanodots as co-reaction accelerator for ultra-sensitive detection of ciprofloxacin. Anal Chim Acta 1206:339690. https://doi.org/10.1016/j.aca.2022.339690