La0.6Sr0.4Fe0.8Co0.2O3-δ electrophoretic coating for oxygen transport membranes
Tài liệu tham khảo
Besra, 2007, A review on fundamentals and applications of electrophoretic deposition (EPD), Prog. Mater Sci., 52, 1, 10.1016/j.pmatsci.2006.07.001
Boccaccini, 2002, Application of electrophoretic and electrolytic deposition techniques in ceramics processing, Curr. Opin. Solid State Mater. Sci., 6, 251, 10.1016/S1359-0286(02)00080-3
Chartier, 1994, Tape casting, The Encyclopedia of Advanced Materials, vol. 4, 1763
Etchegoyen, 2006, An architectural approach to the oxygen permeability of a La0.6Sr0.4Fe0.9Ga0.1O3−δ perovskite membrane, J. Eur. Ceram. Soc., 26, 2807, 10.1016/j.jeurceramsoc.2005.06.025
Ge, 2008, Oxygen selective membranes based on B-site cation-deficient (Ba0.5Sr0.5)(Co0.8Fe0.2)yO3-δ perovskite with improved operational stability, J. Membr. Sci., 318, 182, 10.1016/j.memsci.2008.02.015
Ge, 2009, Evaluation of mixed-conducting lanthanum-strontium-cobaltite ceramic membrane for oxygen separation, AIChE J., 55, 2603, 10.1002/aic.11857
Geffroy, 2013, Rational selection of membrane materials of MIEC materials in energy production precesses, Chem. Eng. Sci., 87, 408, 10.1016/j.ces.2012.10.027
Geffroy, 2015, Identification of the rate-determining step in oxygen transport through La(1–x)SrxFe(1-y)GayO3-δ perovskite membranes, J. Membr. Sci., 476, 340, 10.1016/j.memsci.2014.11.048
Geffroy, 2017, Understanding and identifying the oxygen transport mechanisms through mixed-conductor membranes, Chem. Eng. Sci., 162, 245, 10.1016/j.ces.2017.01.006
Guironnet, 2016, Improvement of oxygen flux through perovskite membranes using a coating of ultra-divided particles, Chem. Eng. Sci., 156, 128, 10.1016/j.ces.2016.09.019
Hamaker, 1940, Formation of a deposit by electrophoresis, Trans. Faraday Soc., 35, 279, 10.1039/tf9403500279
Hayamizu, 2014, Effects of surface modification on the oxygen permeation of Ba0.5Sr0.5Co0.8Fe0.2O3−δ, J. Membr. Sci., 462, 147, 10.1016/j.memsci.2014.03.038
Heavens, 1990, Electrophoretic deposition as a processing route for ceramics, Adv. Ceram. Process. Technol., 1, 255
Majhi, 2011, 2011, Anode supported solid oxide fuel cells (SOFC) by electrophoretic deposition, Int. J. Hydrogen Energy, 36, 14930, 10.1016/j.ijhydene.2011.02.100
Powell, 2019, Laser-oxygen of mild steel: the thermodynamics of the oxidation reaction, J. Phys. D Appl. Phys., 42
Reichmann, 2016, Impact of microstructure on oxygen semi-permeation performance of perovskite membranes: understanding of oxygen transport mechanisms, J. Power Sources, 324, 774, 10.1016/j.jpowsour.2016.06.009
Schulz, 2010, Oxygen permeation of various archetypes of oxygen membranes based on BSCF, AlChE J., 58, 3195, 10.1002/aic.13843
Sunsaro, 2008, Mixed ionic-electronic conducting (MIEC) ceramic-based membranes for oxygen separation, J. Membr. Sci., 320, 13, 10.1016/j.memsci.2008.03.074
Tan, 2010, Pilot-scale production of oxygen from air using perovskite hollow fibre membranes, J. Membr. Sci., 352, 189, 10.1016/j.memsci.2010.02.015
Vivet, 2011, Influence of glass and gold sealants materials on oxygen permeation performances in La0.8Sr0.2Fe0.7Ga0.3O3-δ perovskite membranes, J. Membr. Sci., 366, 132, 10.1016/j.memsci.2010.09.048
Vivet, 2014, New route for high oxygen semi-permeation through surface-modified dense La1-xSrxFe1-yGayO3-δ perovskite membranes, J. Membr. Sci., 454, 97, 10.1016/j.memsci.2013.11.038
Xu, 1999, Oxygen permeation rates through ion-conducting perovskite membrane, Chem. Eng. Sci., 54, 3839, 10.1016/S0009-2509(99)00015-9
Xu, 2004, Citrate method synthesis, characterization and mixed electronic-ionic conduction properties of La0.6Sr0.4Co0.8Fe0.2O3-d perovskite-type complex oxides, Scr. Mater., 50, 165, 10.1016/j.scriptamat.2003.09.008
Zhang, 2007, Preparation and characterization of mixed-conducting thin tubular membrane, J. Membr. Sci., 299, 261, 10.1016/j.memsci.2007.05.001
Zhitomirsky, 2000, Electrophoretic deposition of ceramic materials for fuel cell applications, J. Eur. Ceram. Soc., 20, 2055, 10.1016/S0955-2219(00)00098-4