La pression artérielle : modèles physiologiques pour le réanimateur

Lavoisier - Tập 23 - Trang 222-229 - 2014
D. Chemla1
1Service des explorations fonctionnelles, EA4533, Faculté de médecine Paris Sud, Broca 7, hôpital de Bicêtre, Le Kremlin Bicêtre, France

Tóm tắt

À partir de modèles physiologiques simples de la circulation, la courbe de pression artérielle (PA) périphérique fournit des renseignements qui dépassent le simple recueil de la PA systolique, diastolique, moyenne et pulsée. La PA moyenne est en première approximation constante entre l’aorte et une grosse artère périphérique, et cette propriété peut être mise à profit pour estimer de nombreuses variables hémodynamiques (résistance, élastance, travail ventriculaire gauche). Même si les PA systolique et pulsée sont amplifiées entre l’aorte et la périphérie, certaines hypothèses validées permettent d’évaluer simplement la réserve de précharge à l’aide des variations respiratoires de la PA pulsée périphérique. Le développement récent des techniques tonométriques artérielles devrait permettre d’optimiser la prise en charge hémodynamique des patients de réanimation en donnant accès à une estimation de la compliance artérielle totale, de la constante de temps du Windkessel aortique, du débit cardiaque et de la balance entre apports et besoins myocardiques en oxygène. L’intérêt de la modélisation de l’onde de pression artérielle a été réactivé par la remise en question récente de la contribution des ondes de réflexion à la pression systolique centrale. L’égalité entre la PA systolique aortique et le second pic systolique de la PA périphérique, reste à ce jour difficilement explicable par les modèles classiques, et il est probable que des modèles alternatifs seront développés dans un futur proche.

Tài liệu tham khảo

Lehman LWH, Saeed M, Talmor D, et al (2013) Methods of blood pressure measurement in the ICU. Crit Care Med 41:34–40 Horowitz D, Amoateng-Adjepong Y, Zarich S, et al (2013) Arterial line or cuff BP? Chest 143:270 Chemla D, Plamann K, Nitenberg A (2008) Towards new indices of arterial stiffness using systolic pulse contour analysis. J Cardiovasc Pharmacol 51:111–117 Michard F, Chemla D, Richard C, et al (1999) Clinical use of respiratory changes in arterial pulse pressure to monitor the hemodynamic effects of PEEP. Am J Respir Crit Care Med 159:935–939 Michard F, Boussat S, Chemla D, et al (2000) Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med 162:134–138 O’Rourke MF (2007) Mechanical factors in arterial aging. A clinical perspective. J Am Coll Cardiol 50:1–13 Safar ME, Levy BI (2003) Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular disease. Circulation 107:2864–2869 Chemla D (2007) Le monitorage (invasif et non invasif) de la pression artérielle. In: Les techniques de monitorage hémodynamique en réanimation. JL Vincent & JL Teboul Eds. Springer Paris, pp 16–36 Lamia B, Teboul JL, Monnet X, et al (2007) Contribution of arterial stiffness and stroke volume to peripheral pulse pressure in ICU patients: an arterial tonometry study. Intensive Care Med 33:1931–1937 Dufour N, Chemla D, Teboul JL, et al (2011) Changes in pulse pressure following fluid loading: a comparison between aortic root (non-invasive tonometry) and femoral artery (invasive recordings). Intensive Care Med 37:942–949 Pauca AL, Kon ND, O’Rourke MF (2004) The second peak of the radial artery pressure wave represents aortic systolic pressure in hypertensive and elderly patients. Br J Anaesth 92:651–657 Hirata K, Kojima I, Momomura S (2013) Noninvasive estimation of central blood pressure and the augmentation index in the seated position: a validation study of two commercially available methods. J Hypertens 31:508–515 Crépeau E, Sorine M (2007) A reduced model of pulsatile flow in an arterial compartment, Chaos, Solitons & Fractal 34:594–605 Hoffman JI (2011) Pulmonary vascular resistance and viscosity: the forgotten factor. Pediatr Cardiol 32:557–561 Milnor WR (1982) Hemodynamics. Baltimore, Williams & Wilkins pp 1–390 Skalak R (1972) Synthesis of a complete circulation. In: Cardiovascular Fluid Dynamics. Bergel DH Eds. New York: Academic Press pp 341–376 Kottenberg-Assenmacher E, Aleksic I, Eckholt M, et al (2009) Critical closing pressure as the arterial downstream pressure with the heart beating and during circulatory arrest. Anesthesiology 110:370–379 Chemla D, Nitenberg A (2010) Total arterial compliance estimated from the time constant of aortic pressure decay: the influence of downstream pressure. FASEB J 24(Meeting Abstract Supplement): 1039.5 Maas JJ, de Wilde RB, Aarts LP, et al (2012) Determination of vascular waterfall phenomenon by bedside measurement of mean systemic filling pressure and critical closing pressure in the intensive care unit. Anesth Analg 114:803–810 Persichini R, Silva S, Teboul JL, et al (2012) Effects of norepinephrine on mean systemic pressure and venous return in human septic shock. Crit Care Med 40:3146–3153 Yang XX, Critchley LA, Joynt GM (2011) Determination and precision error of the pulmonary artery thermodilution catheter using in vitro continuous flow test rig. Anesth Analg 112:70–77 Mitchell GF, Tardif JC, Arnold JM, et al (2001) Pulsatile hemodynamics in congestive heart failure. Hypertension 38:1433–1439 Marey EJ (1863) Physiologie médicale de la circulation du sang. Adrien Delahaye Eds 568 pages Shadwick RE (1999) Mechanical design in arteries. J Exp Biol 202:3305–3313 Hutchinson SJ (2009) Aortic physiology and function: anatomic and histologic considerations. In: Aortic diseases: clinical diagnostic imaging atlas. Saunders Eds pp. 1–15 Downey JM (2003) Hemodynamics. In: Johnson LR, Byrne JH. Essential medical physiology 3rd edition. Elsevier USA Eds pp. 157–174 Redheuil A, Yu WC, Wu CO, et al (2010) Reduced ascending aortic strain and distensibility: earliest manifestations of vascular aging in humans. Hypertension 55:319–326 Westerhof N, Lankhaar JW, Westerhof BE (2009) The arterial Windkessel. Med Biol Eng Comput 47:131–141 Chemla D, Hébert JL, Coirault C, et al (1998) Total arterial compliance estimated by stroke volume-to-aortic pulse pressure ratio in humans. Am J Physiol 274(2 Pt 2):H500–H505 Oliver JJ, Webb DJ (2003) Noninvasive assessment of arterial stiffness and risk of atherosclerotic events. Arterioscler Thromb Vasc Biol 23:554–566 Laurent S, Cockcroft J, van Bortel L, et al (2006) Expert consensus document on arterial stiffness: methodological and clinical applications. Eur Heart J 27:2588–2605 Kelly RP, Ting CT, Yang TM, et al (1992) Effective arterial elastance as index of arterial vascular load in humans. Circulation 86:513–521 Chemla D, Antony I, Lecarpentier Y, Nitenberg A (2003) Contribution of systemic vascular resistance and total arterial compliance to effective arterial elastance in humans. Am J Physiol Heart Circ Physiol 285:H614–H620 Grossman W (2005) Evaluation of systolic and diastolic function of the myocardium. In: Cardiac catheterization, angiography, and intervention. Eds Baim DS and Grossman W. Williams & Wilkins Baltimore Chap 20, pp. 333–355 Chemla D, Castelain V, Zhu K, et al (2013) Estimating right ventricular stroke work and the pulsatile work fraction in pulmonary hypertension. Chest 143:1343–1350 Lamia B, Chemla D, Richard C, Teboul JL (2005) Clinical review: interpretation of arterial pressure in shock states. Crit Care 9:601–606 Rigamonti F, Graf G, Merlani P, Bendjelid K (2013) The shortterm prognosis of cardiogenic shock can be determined using hemodynamic variables: a retrospective cohort study. Crit Care Med 41:2484–2491 Chemla D, Nitenberg A, Teboul JL, et al (2009) Subendocardial viability index is related to the diastolic/systolic time ratio and left ventricular filling pressure, not to aortic pressure: an invasive study in resting humans. Clin Exp Pharmacol Physiol 36:413–418