La modulation de la douleur par l’attention. Les apports de la neurophysiologie
Tóm tắt
Il est désormais admis que la douleur est un phénomène perceptif complexe, ne dépendant pas seulement des caractéristiques physiques de la stimulation nociceptive mais aussi de l’état affectif et cognitif du sujet. Le système nerveux serait ainsi capable de modifier ce percept qu’est la douleur et de faire face aux signaux extérieurs menaçant l’intégrité physique de l’organisme. Parmi ces capacités internes, un rôle important est accordé à l’attention: écarter son attention du signal nociceptif pour investir d’autres objets perceptifs permet de diminuer le traitement du signal nociceptif et, par conséquent, la douleur résultante. Les études neurophysiologiques au moyen de l’électroencéphalographie (EEG) et de la magnétoencéphalographie (MEG) permettent de décrire l’organisation spatiotemporelle des processus nerveux permettant de moduler la douleur par l’attention. Focaliser son attention sur des informations non nociceptives ou sur une région corporelle qui ne subit pas de stimulation nociceptive permet de biaiser le traitement nociceptif dans les régions somatosensorielles (contrôle attentionnel descendant). Par ailleurs, d’autres mécanismes sous l’gide du gyrus cingulaire antérieur permettent à l’attention d’être capturée par la douleur elle-même afin de pouvoir traiter l’événement extérieur à l’origine de la douleur (contrôle attentionnel ascendant). Minimiser l’impact de la douleur sur nos comportements semble donc dépendre d’un équilibre subtil entre différents mécanismes attentionnels.
Tài liệu tham khảo
Allport A (1993) Attention and control: have we been asking the wrong question? A critical review of twenty-five years. In Meyer DE, Kornblum S, Attention and Performance XIV. MIT press, Cambridge 183–217
Bingel U, Rose M, Gläschner J, Büchel C (2007) fMRI reveals how pain modulates visual object processing in the ventral visual stream. Neuron 55: 157–167
Broadbent DE (1958) Perception and communication. Pergamon Press, Oxford
Bushnell MC, Duncan GH, Dubner R, et al. (1985) Attentional influences on noxious and innocuous cutaneous heat detection in humans and monkeys. J Neurosci 5: 1103–1110
Bushnell MC, Duncan GH, Hofbauer RK, et al. (1999) Pain perception: is there a role for primary somatosensory cortex? PNAS 96: 7705–7709
Camus JF (1996) La psychologie cognitive de l’attention. Armand Colin, Paris
Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3: 201–215
Corbetta M, Miezin FM, Dobmeyer S, et al. (1990) Attentional modulation of neural processing of shape, color, and velocity in humans. Science 248: 1556–1559
Crombez G, Bayens F, Eelen P (1994) Sensory and temporal information about impending pain: the influence of predictability on pain. Behav Res Ther 34: 911–918
Crombez G, Van Damme S, Eccleston C (2005) Hypervigilance to pain: an experimental and clinical analysis. Pain 116: 4–7
Daffner KR, Scinto LFM, Calvo V, et al. (2000) The influence of stimulus deviance on electrophysiologic and behavioral responses to novel events. J Cogn Neurosci 12: 393–406
Eccleston C, Crombez G (1999) Pain demands attention: a cognitive-affective model of the interruptive function of pain. Psychol Bull 125: 356–366
Escera C, Alho K, Schröger E, Winkler I (2000) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5: 151–166
Frankenstein UN, Richter W, McIntyre MC, Rémy F (2001) Distraction modulates anterior cingulate gyrus activations during the cold pressor test. Neuroimage 14: 827–836
Frot M, Mauguière F, Magnin M, García-Larrea L (2008) Parallel processing of nociceptive A-δ inputs in SII and midcingulate cortex in humans. J Neurosci 28: 944–952
García-Larrea L, Frot M, Valeriani M (2003) Brain generators of laser-evoked potentials: from dipoles to functional significance. Neurophysiol Clin 33: 279–292
García-Larrea L, Peyron R, Laurent B, Mauguière F (1997) Association and dissociation between laser-evoked potentials and pain perception. Neuroreport 8: 3785–3789
Hatem SM, Plaghki L, Mouraux A (2007) How response inhibition modulates nociceptive and non-nociceptive somatosensory brain-evoked potentials. Clin Neurophysiol 118: 1503–1516
Hillyard SA, Vogel EK, Luck SJ (1998) Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. Phil Trans R Soc Lond B 353: 1257–1270
Hopf JM, Boehler CN, Luck SJ, et al. (2006) Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. PNAS 103: 1053–1058
Kahneman D (1973) Attention and effort. Prentice Hall, London
Lavie N (2005) Distracted and confused? Selective attention under load. Trends Cogn Sci 9: 75–82
Legrain V, Bruyer R, Guérit JM, Plaghki L (2003) Nociceptive processing in the human brain of infrequent task-relevant and task-irrelevant noxious stimuli. A study with ERPs elicited by CO2 laser radiant heat stimuli. Pain 103: 237–248
Legrain V, Bruyer R, Guérit JM, Plaghki L (2005) Involuntary orientation of attention to unattended deviant nociceptive stimuli is modulated by concomitant visual task difficulty. Evidence from laser-evoked potentials. Clinical Neurophysiology 116: 2165–2174
Legrain V, Guérit JM, Bruyer R, Plaghki L (2002) Attentional modulation of the nociceptive processing into the human brain: selective spatial attention, probability of stimulus occurrence, and target detection effects on laser-evoked potentials. Pain 99: 21–39
Legrain V, Guérit JM, Bruyer R, Plaghki L (2003) Electrophysiological correlates of attentional orientation in humans to strong intensity deviant nociceptive stimuli, inside and outside the focus of spatial attention. Neurosci Lett 339: 107–110
Leventhal H, Everhart D (1979) Emotions, Pain, and physical illness. In Izard CE, Emotions in personnality and psychopathology. Plenum Press, New York, 263–299
Lorenz J, García-Larrea L (2003) Contribution of attention and cognitive factors to laser-evoked brain potentials. Neurophysiol Clin 33: 293–301
Mangun GR, Hopfinger J, Kussmaul CL, et al. (1997) Covariations in ERP and PET measures of spatial selective attention in human extrastriate visual cortex. Hum Brain Mapp 5: 1–7
McCaul KD, Malott JM (1984) Distraction and coping with pain. Psychol Bull 95: 516–533
Miron D, Duncan GH, Bushnell MC (1989) Effects of attention on the intensity and unpleasantness of thermal pain. Pain 39: 345–352
Moran J, Desimone R (1985) Selective attention gates visual processing in the extrastriate cortex. Science 229: 782–784
Näätänen R (1992) Attention and brain function. Erlbaum, Hillsdale, Erlbaum
Nakamura Y, Paur R, Zimmermann R, Bromm B (2002) Attentional modulation of human pain processing in the secondary somatosensory cortex: a magnetoencephalographic study. Neurosci Lett 328: 29–32
Ohara S, Crone NE, Weiss N, Vogel H, et al. (2004) Attention to pain is processed at multiple cortical sites in man. Exp Brain Res 156: 513–517
Petrovic P, Peterson KM, Ghatan PH, et al. (2000) Pain-related cerebral activation is altered by a distracting cognitive task. Pain 85: 19–30
Peyron R, García-Larrea L, Grégoire MC, et al. (1999) Haemodynamic brain responses to acute pain in humans. Sensory and attentional networks. Brain 122: 1765–1779
Peyron R, Laurent B, García-Larrea L (2000) Functional imaging of brain response to pain. A review and meta-analysis. Neurophysiol Clin 3: 263–288
Polich J (2003) Detection of change. Event-related potential and fMRI findings. Kluwer Academic Publishers, Boston
San Miguel I, Corral MJ, Escera C (2008) When loading working memory reduces distraction: behavioural and electrophysiological evidence from an auditory-visual distraction paradigm. J Cogn Neurosci (in press)
Schlereth T, Baumgärtner U, Magerl W, et al. (2003) Left-hemisphere dominance in early nociceptive processing in the human parasylvian cortex. Neuroimage 20: 441–454
Schnitzler A, Ploner M (2000) Neurophysiology and functional neuroanatomy of pain perception. J Clin Neurophysiol 17: 592–603
Seminowicz DA, Davis KD (2007) Interactions of pain intensity and cognitive load: the brain stays on task. Cereb Cortex 17: 1412–1422
Seminowicz DA, Davis KD (2007) Pain enhances functional connectivity of a brain network evoked by performance of a cognitive task. J Neurophysiol 97: 3651–3659
Seminowicz DA, Mikulis DJ, Davis KD (2004) Cognitive modulation of pain-related brain responses depends on behavioral strategy. Pain 112: 48–58
Spence C, Bentley DE, Philipps N, et al. (2002) Selective attention to pain: a psychophysical investigation. Exp Brain Res 145: 395–402
Spitzer H, Desimone R, Moran J (1988) Increased attention enhances both behavioral and neuronal performance. Science 240: 338–340
Tracey I, Mantyh PW (2007) The cerebral signature for pain perception and its modulation. Neuron 55: 377–391
Treisman A (1969) Strategies and models of selective attention. Psychol Rev 76: 282–299
Valet M, Sprenger T, Boecker H, et al. (2004) Distraction modulates connectivity of the cingulo-frontal cortex and the midbrain during pain. An fMRI analysis. Pain 109: 399–408
Vancleef LMG, Peters ML (2006) Pain catastrophizing, but not injury/illness sensitivity or anxiety sensitivity, enhances attentional interference by pain. J Pain 7: 23–30
Van Damme S, Crombez G, Eccleston C (2002) Retarded disengagement from pain cues: the effects of pain catastrophizing and pain expectancy. Pain 100: 111–118
Veldhuijzen DS, Kenemans JL, de Bruin CM (2006) Pain and attention: attentional disruption or distraction? J Pain 7: 11–20
Yago E, Escera C, Alho K, et al. (2003) Spatiotemporal dynamics of auditory novelty-P3 event-related brain patential. Brain Res Cogn Brain Res 16: 383–390
Yantis S, Jonides J (1990) Abrupt visual onsets and selective attention: voluntary versus automatic allocation. J Exp Psychol Hum Percept Perform 16: 121–134