LLL-reduction for integer knapsacks

Iskander Aliev1, Martin Henk2
1School of Mathematics and Wales Institute of Mathematical and Computational Sciences, Cardiff University, Senghennydd Road, Cardiff, Wales, UK
2Fakultät für Mathematik, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Aardal K, Lenstra A (2004) Hard equality constrained integer knapsacks. Math Oper Res 29(3):724–738

Aliev I, Henk M (2010) Feasibility of integer knapsacks. SIAM J Optim 20:2978–2993

Babai L (1986) On Lovász’ lattice reduction and the nearest lattice point problem. Combinatorica 6(1):1–13

Beihoffer D, Hendry J, Nijenhuis A, Wagon S (2005) Faster algorithms for Frobenius numbers. Electron J Comb 12. Research Paper 27, 38 pp (electronic)

Cassels JWS (1971) An introduction to the geometry of numbers. Springer, Berlin

Eisenbrand F, Shmonin G (2008) Parametric integer programming in fixed dimension. Math Oper Res 33(4):839–850

Fukshansky L, Robins S (2007) Frobenius problem and the covering radius of a lattice. Discrete Comput Geom 37(3):471–483

Grötschel M, Lovász L, Schrijver A (1988) Geometric algorithms and combinatorial optimization. Algorithms and combinatorics: study and research texts, vol 2. Springer, Berlin

Gruber PM (2007) Convex and discrete geometry. Springer, Berlin

Gruber PM, Lekkerkerker CG (1987) Geometry of numbers. North-Holland, Amsterdam

Hansen P, Ryan J (1996) Testing integer knapsacks for feasibility. Eur J Oper Res 88(3):578–582

Kannan R (1992) Lattice translates of a polytope and the Frobenius problem. Combinatorica 12(2):161–177

Knight MJ (1980) A generalization of a result of Sylvester’s. J Number Theory 12(3):364–366

Lee J, Onn S, Weismantel R (2009) Approximate nonlinear optimization over a weighted independence systems. SIAM J Discrete Math 23:1667–1681

Lenstra AK, Lenstra HW Jr., Lovász L (1982) Factoring polynomials with rational coefficients. Math Ann 261(4):515–534

Martinet J (2003) Perfect lattices in Euclidean spaces. Grundlehren der Mathematischen Wissenschaften, vol 327. Springer, Berlin

McMullen P (1984) Determinants of lattices induced by rational subspaces. Bull Lond Math Soc 16(3):275–277

Papadimitriou CH, Steiglitz K (1998) Combinatorial optimization: algorithms and complexity. Dover, Mineola

Pleasants P, Ray H, Simpson J (2005) The Frobenius problem on lattices. Australas J Comb 32:27–45

Ramírez Alfonsín JL (1996) Complexity of the Frobenius problem. Combinatorica 16(1):143–147

Ramírez Alfonsín JL (2005) The Diophantine Frobenius problem. Oxford lecture series in mathematics and its applications

Schrijver A (1986) Theory of linear and integer programming. Wiley, Chichester

Simpson RJ, Tijdeman R (2003) Multi-dimensional versions of a theorem of Fine and Wilf and a formula of Sylvester. Proc Am Math Soc 131(6):1661–1671

Vaaler J (1979) A geometric inequality with applications to linear forms. Pac J Math 83(2):543–553