LIBSVM

ACM Transactions on Intelligent Systems and Technology - Tập 2 Số 3 - Trang 1-27 - 2011
Chih-Chung Chang1, Chih‐Jen Lin1
1National Taiwan University, Taipei, Taiwan

Tóm tắt

LIBSVM is a library for Support Vector Machines (SVMs). We have been actively developing this package since the year 2000. The goal is to help users to easily apply SVM to their applications. LIBSVM has gained wide popularity in machine learning and many other areas. In this article, we present all implementation details of LIBSVM. Issues such as solving SVM optimization problems theoretical convergence multiclass classification probability estimates and parameter selection are discussed in detail.

Từ khóa


Tài liệu tham khảo

10.1145/130385.130401

10.1162/089976601750399335

10.1162/089976602760128081

10.1109/TNN.2006.875973

10.1002/asmb.v21:2

10.1023/A:1022627411411

Crisp D. J. and Burges C. J. C. 2000. A geometric interpretation of ν-SVM classifiers. In Advances in Neural Information Processing Systems S. Solla T. Leen and K.-R. Müller Eds. Vol. 12 MIT Press Cambridge MA. Crisp D. J. and Burges C. J. C. 2000. A geometric interpretation of ν-SVM classifiers. In Advances in Neural Information Processing Systems S. Solla T. Leen and K.-R. Müller Eds. Vol. 12 MIT Press Cambridge MA.

10.1093/bioinformatics/btq463

10.5555/1046920.1194907

Fine S., 2001, Efficient svm training using low-rank kernel representations, J. Mach. Learn. Res., 2, 243

10.5555/1248547.1248600

10.1109/ICCV.2005.239

10.1007/s12021-008-9041-y

Hsu C.-W. Chang C.-C. and Lin C.-J. 2003. A practical guide to support vector classification. Tech. rep. Department of Computer Science National Taiwan University. Hsu C.-W. Chang C.-C. and Lin C.-J. 2003. A practical guide to support vector classification. Tech. rep. Department of Computer Science National Taiwan University.

10.1109/72.991427

10.1023/A:1012427100071

Joachims T., Advances in Kernel Methods -- Support Vector Learning, B. Schölkopf

10.5555/1248547.1248602

10.1162/089976601300014493

Knerr S., 1990, Neurocomputing: Algorithms, Architectures and Applications

Kressel U. H.-G., Advances in Kernel Methods -- Support Vector Learning, B. Schölkopf

Lee Y.-J., Proceedings of the 1st SIAM International Conference on Data Mining.

Lin C.-J. and Weng R. C. 2004. Simple probabilistic predictions for support vector regression. Tech. rep. Department of Computer Science National Taiwan University. Lin C.-J. and Weng R. C. 2004. Simple probabilistic predictions for support vector regression. Tech. rep. Department of Computer Science National Taiwan University.

10.1007/s10994-007-5018-6

List N., 2007, General polynomial time decomposition algorithms, J. Mach. Learn. Res., 8, 303

List N., Proceedings of the 22nd Annual Conference on Computational Learning Theory.

10.1017/S1351324906004505

Osuna E. Freund R. and Girosi F. 1997a. Support vector machines: Training and applications. AI Memo 1602 Massachusetts Institute of Technology. Osuna E. Freund R. and Girosi F. 1997a. Support vector machines: Training and applications. AI Memo 1602 Massachusetts Institute of Technology.

Osuna E., Proceedings of CVPR'97

10.1080/10556780512331318209

Platt J. C., Advances in Kernel Methods - Support Vector Learning, B. Schölkopf

Platt J. C., Advances in Large Margin Classifiers, A. Smola, P. Bartlett, B. Schölkopf, and D

10.1162/089976601750264965

10.1162/089976600300015565

10.5555/1756006.1859915

Vapnik V. 1998. Statistical Learning Theory. Wiley New York. Vapnik V. 1998. Statistical Learning Theory. Wiley New York.

10.5555/1005332.1016791