L2-type contraction for shocks of scalar viscous conservation laws with strictly convex flux

Journal de Mathématiques Pures et Appliquées - Tập 145 - Trang 1-43 - 2021
Moon-Jin Kang1
1Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea

Tài liệu tham khảo

Amadori, 2012, The one-dimensional Hughes' model for pedestrian flow: Riemann-type solutions, Acta Math. Sci., 32, 259, 10.1016/S0252-9602(12)60016-2 Bellomo, 2002, On the mathematical theory of vehicular traffic flow and fluid dynamic and kinetic modelling, Math. Models Methods Appl. Sci., 12, 1801, 10.1142/S0218202502002343 Bellomo, 2011, On the modeling of traffic and crowds: a survey of models, speculations, and perspectives, SIAM Rev., 53, 409, 10.1137/090746677 Bertozzi, 2006, Designer shocks for carving out microscale surface morphologies, Proc. Natl. Acad. Sci., 113, 11384, 10.1073/pnas.1615158113 Bertozzi, 1998, Contact line stability and ‘undercompressive shocks’ in driven thin film flow, Phys. Rev. Lett., 81, 5169, 10.1103/PhysRevLett.81.5169 Carrillo, 2016, An improved version of the Hughes model for pedestrian flow, Math. Models Methods Appl. Sci., 26, 671, 10.1142/S0218202516500147 Choi, 2020, Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model, Math. Models Methods Appl. Sci., 30, 387, 10.1142/S0218202520500104 Choi, 2020, Global well-posedness of large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model, J. Math. Pures Appl., 142, 266, 10.1016/j.matpur.2020.03.002 Choi, 2015, Short-time stability of scalar viscous shocks in the inviscid limit by the relative entropy method, SIAM J. Math. Anal., 47, 1405, 10.1137/140961523 Dafermos, 1979, The second law of thermodynamics and stability, Arch. Ration. Mech. Anal., 70, 167, 10.1007/BF00250353 Dalibard, 2010, Long time behavior of parabolic scalar conservation laws with space periodic flux, Indiana Univ. Math. J., 59, 257, 10.1512/iumj.2010.59.3874 Dalibard, 2017, Existence and stability of planar shocks of viscous scalar conservation laws with space-periodic flux, J. Math. Pures Appl., 107, 336, 10.1016/j.matpur.2016.07.003 Delle Monache, 2014, Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result, J. Differ. Equ., 257, 4015, 10.1016/j.jde.2014.07.014 DiPerna, 1979, Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J., 28, 137, 10.1512/iumj.1979.28.28011 Gupta, 2005, Analyses of shock waves and jams in traffic flow, J. Phys. A Gen. Phys., 38, 4069, 10.1088/0305-4470/38/19/002 Kang, 2018, Non-contraction of intermediate admissible discontinuities for 3-D planar isentropic magnetohydrodynamics, Kinet. Relat. Models, 11, 107, 10.3934/krm.2018006 Kang, 2020, Contraction property for large perturbations of shocks of the barotropic Navier-Stokes system, J. Eur. Math. Soc. (JEMS), 10.4171/JEMS/1018 Kang, 2016, Criteria on contractions for entropic discontinuities of systems of conservation laws, Arch. Ration. Mech. Anal., 222, 343, 10.1007/s00205-016-1003-1 Kang, 2017, L2-contraction for shock waves of scalar viscous conservation laws, Ann. Inst. Henri Poincaré (C): Anal. Non Linéaire, 34, 139, 10.1016/j.anihpc.2015.10.004 Kang, 2020, Uniqueness and stability of entropy shocks to the isentropic Euler system in a class of inviscid limits from a large family of Navier-Stokes systems, Invent. Math., 10.1007/s00222-020-01004-2 Kang, 2019, L2-contraction for planar shock waves of multi-dimensional scalar viscous conservation laws, J. Differ. Equ., 267, 2737, 10.1016/j.jde.2019.03.030 Krupa, 2019, Single entropy condition for Burgers equation via the relative entropy method, J. Hyperbolic Differ. Equ., 16, 157, 10.1142/S0219891619500061 Kružkov, 1970, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81, 228 Leger, 2011, L2 stability estimates for shock solutions of scalar conservation laws using the relative entropy method, Arch. Ration. Mech. Anal., 199, 761, 10.1007/s00205-010-0341-7 Lighthill, 1955, On kinematic waves II: a theory of traffic flow on long, crowded roads, Proc. R. Soc. Lond. Ser. A, 229, 317, 10.1098/rspa.1955.0089 Serre, 2014, L2-type contraction for systems of conservation laws, J. Éc. Polytech. Math., 1, 1, 10.5802/jep.1 Serre, 2016, About the relative entropy method for hyperbolic systems of conservation laws, Contemp. Math. AMS, 658, 237, 10.1090/conm/658/13123 Serre, 2016, The relative entropy method for the stability of intermediate shock waves; the rich case, Discrete Contin. Dyn. Syst., 36, 4569, 10.3934/dcds.2016.36.4569 Vasseur, 2008, Recent results on hydrodynamic limits, 323 Vasseur, 2016, Relative entropy and contraction for extremal shocks of conservation laws up to a shift, vol. 666, 385 Vasseur, 2015, The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method, SIAM J. Math. Anal., 47, 4350, 10.1137/15M1023439