L p (R n )-Boundedness of certain commutators
Tóm tắt
In this paper, the L
p
(R
n
)-boundedness of the commutators generalized by BMO(R
n
) function and the singular integral operator T with rough kernel Ω ∈ L log+
L(S
n−1) is proved by using the Bony’s formula for the paraproduct of two functions.
Tài liệu tham khảo
J Alvarez, R Bagby, D Kurtz, C Pérez. Weighted estimates for commutators of linear operators, Studia Math, 1995, 104: 151–161.
J Chen, D Fan, Y Ying. Rough Marcinkiewicz integrals with L(log+ L)2 kernels on product spaces, Adv Math (China), 2001, 30: 179–181.
R Coifman, Y Meyer. Au déla des opérateurs pseudo-différetiles, Astérisque, 1978, 57: 1–185.
A P Calderón, A Zygmund. On singular integral, Amer J Math, 1956, 78: 289–309.
J. Duoandikoetxea. Weighted norm inequalities for homogeneous singular integrals, Trans Amer Math Soc, 1993, 336: 869–880.
J Garcia-Cuerva, J L Rubio de Francia. Weighted Norm Inequalities and Related Topics, North-Holland Math Stud 116, Amsterdam, 1985.
G Hu, S Lu, B Ma. Commutators of convolution operators, Acta Math Sinica (Chin Ser), 1999, 42: 359–368. (In Chinese)
G Hu. L p(R n) Boundedness for the Commutators of a homogeneous singular Operator, Studia Math, 2003, 154: 13–27.
R Strichartz. Bounded mean oscillation and Sobolev spaces, Indiana Univ Math J, 1980, 29(4):539–558.
M E Taylor. Pseudodifferential Operators and Nonlinear PDE, Progr Math 100, Birkhäuser, 1991.
H Triebel. Theory of Function Spaces, II, Monogr Math 84, Birkhäuser, 1992.