L p (R n )-Boundedness of certain commutators

Yan-mei Di1, Li-ya Jiang1
1Department of Mathematics, Zhejiang University of Technology, Hangzhou, China

Tóm tắt

In this paper, the L p (R n )-boundedness of the commutators generalized by BMO(R n ) function and the singular integral operator T with rough kernel Ω ∈ L log+ L(S n−1) is proved by using the Bony’s formula for the paraproduct of two functions.

Tài liệu tham khảo

J Alvarez, R Bagby, D Kurtz, C Pérez. Weighted estimates for commutators of linear operators, Studia Math, 1995, 104: 151–161. J Chen, D Fan, Y Ying. Rough Marcinkiewicz integrals with L(log+ L)2 kernels on product spaces, Adv Math (China), 2001, 30: 179–181. R Coifman, Y Meyer. Au déla des opérateurs pseudo-différetiles, Astérisque, 1978, 57: 1–185. A P Calderón, A Zygmund. On singular integral, Amer J Math, 1956, 78: 289–309. J. Duoandikoetxea. Weighted norm inequalities for homogeneous singular integrals, Trans Amer Math Soc, 1993, 336: 869–880. J Garcia-Cuerva, J L Rubio de Francia. Weighted Norm Inequalities and Related Topics, North-Holland Math Stud 116, Amsterdam, 1985. G Hu, S Lu, B Ma. Commutators of convolution operators, Acta Math Sinica (Chin Ser), 1999, 42: 359–368. (In Chinese) G Hu. L p(R n) Boundedness for the Commutators of a homogeneous singular Operator, Studia Math, 2003, 154: 13–27. R Strichartz. Bounded mean oscillation and Sobolev spaces, Indiana Univ Math J, 1980, 29(4):539–558. M E Taylor. Pseudodifferential Operators and Nonlinear PDE, Progr Math 100, Birkhäuser, 1991. H Triebel. Theory of Function Spaces, II, Monogr Math 84, Birkhäuser, 1992.