L ∞-convergence of collocation and galerkin approximations to linear two-point parabolic problems

Aequationes mathematicae - Tập 11 - Trang 230-249 - 1974
J. C. Cavendish1,2, C. A. Hall1,2
1Mathematics Department, General Motors Research Laboratories, Warren, USA
2Department of Mathematics, University of Pittsburgh, Pittsburgh, USA

Tóm tắt

Two semidiscrete collocation approximations using smooth cubic splines are developed as approximations to the solution of two-point linear parabolic boundary value problems.L ∞-convergence results are presented for these two approximations as well as the piecewise linear Galerkin approximation. Several computational examples are given to illustrate the convergence results and demonstrate the applicability of the method.

Tài liệu tham khảo

Ahlberg J. H., Hilson, E. N. andWalsh, J. L.,The Theory of Splines and Their Applications (Academic Press, N.Y. 1967). Bellman R. E.,Introduction to Matrix Analysis (McGraw-Hill, N. Y. 1970). Birkhoff, G. andVarga, R. S.,Discretization Errors for Well-set Cauchy Problems, I, J. Math. and Phys.44, 1–23 (1965). Birkhoff, G. andDe Boor, C.,Piecewise Polynomial Interpolation and Approximation [In Approximation of Functions, pp. 164–190] (H. Garabedian ed., Elsevier, Amsterdam 1965). Cavendish, J. C.,Collocation Methods for Elliptic and Parabolic Boundary Value Problems (Ph.D. Dissertation, University of Pittsburgh 1972). Ciarlet, P. G.,An O(h 2)Method for a Nonsmooth Boundary Value Problem, Aequationes Math.2, 39–49 (1968). Ciarlet, P. G., Schultz, M. M. andVarga, R. S.,Numerical Methods of High-order Accuracy for Nonlinear Boundary Value Problems, I, Numer. Math.9, 394–430 (1967). Corduneanu, C,Principles of Differential and Integral Equations (Allyn and Bacon Inc., Boston 1971). Douglas, J. Jr. andDupont, T.,Galerkin Methods for Parabolic Equations, SIAM J. Numer. Anal.7, 575–626 (1970). Douglas, J. Jr., andDupont, T.,Finite Element Collocation Methods, in Proceedings of O.N.R. Regional Symposium on the Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, (University of Maryland, Baltimore County, June 26–30, 1972, A. Aziz, ed. Academic Press, N.Y. 1973). Friedman, A.,Partial Differential Equations of Parabolic Type (Prentice-Hall, Englewood Cliffs 1964). Fyfe, D. J.,The Use of Cubic Splines in the Solution of Two-point Boundary Value Problems, Comput. J.17, 188–192 (1968). Gordon, W. J.,Blending-Function — Methods of Bivariate and Multivariate Interpolation and Approximation, SIAM J. Numer. Anal.8, 158–177 (1971). Hall, C. A.,Natural Cubic and Bicubic Spline Interpolation SIAM J. Numer. Anal.10, 1055–1059, (1973). Isaacson, E. andKeller, H. B.,Analysis of Numerical Methods (John Wiley and Sons, Inc., N.Y., 1966). Lucas, T. R. andReddien, G. W., Jr.,Some Collocation Methods for Nonlinear Boundary Value Problems, SIAM J. Numer. Anal.,9, 341–356 (1972). Price, H. S. andVarga, R. S.,Error Bounds for Semidiscrete Galerkin Approximations of Parabolic Problems with Applications to Petroleum Reservoir Mechanics [in Numerical Solution of Field Problems in Continuum Physics, pp. 74–79] (G. Birkhoff and R. Varga, eds. A. M. S., Providence 1970). Russell, R. D. andShampine, L. F.,A Collocation Method for Boundary Value Problems, Numer. Math.19, 1–28 (1972). Varga, R. S.,Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, New Jersey (1962). Varga, R. S.,On Higher Order Stable Implicit Methods for Solving Parabolic Partial Differential Equations, J. Math. and Phys.40, 220–231 (1961). Wheeler, M. F.,A priori L 2 Error Estimates for Galerkin Approximations to Parabolic Differential Equations (Ph.D., Rice University, Houston, Texas, 1971).