Ku70 và Poly(ADP-Ribose) Polymerase-1 Cạnh Tranh Điều Hòa Gene Transactivation do β-Catenin và T-Cell Factor-4 Thực Hiện: Liên Kết Có Thể Giữa Nhận Dạng Tổn Thương DNA và Ký Hiệu Wnt

American Association for Cancer Research (AACR) - Tập 67 Số 3 - Trang 911-918 - 2007
Masashi Idogawa1,2,3,4, Mitsuko Masutani5, Miki Shitashige1, Kazufumi Honda1, Takashi Tokino2, Yasuhisa Shinomura3, Kohzoh Imai3, Setsuo Hirohashi1, Tesshi Yamada1
11Chemotherapy Division and
23Department of Molecular Biology, Cancer Research Institute;
34First Department of Internal Medicine; and
45Department of Biomedical Engineering, Biomedical Research Center, Sapporo Medical University, Sapporo, Japan
52ADP-Ribosylation in Oncology Project, National Cancer Center Research Institute, Tokyo, Japan;

Tóm tắt

Tóm tắt

Việc hình thành phức hợp h я T-cell factor-4 (TCF-4) và β-catenin trong nhân tế bào được coi là điều quan trọng đối với sự phát triển phôi và sự sinh carcinogenesis đại trực tràng. Chúng tôi đã báo cáo trước đây rằng poly(ADP-ribose) polymerase-1 (PARP-1) tương tác với phức hợp TCF-4 và β-catenin và tăng cường hoạt động phiên mã của nó. Tuy nhiên, ý nghĩa sinh học của nó vẫn chưa được giải thích. Sử dụng phương pháp phòng chống miễn dịch và phổ khối, chúng tôi đã phát hiện hai protein Ku, Ku70 và Ku80, cũng liên quan đến phức hợp này. Việc giảm biểu hiện Ku70 bằng RNA can thiệp đã làm tăng lượng β-catenin liên kết với TCF-4 và tăng cường hoạt động phiên mã. PARP-1 cạnh tranh với Ku70 để kết nối với TCF-4. Việc điều trị bằng bleomycin, một tác nhân kiềm hóa gây tổn thương DNA, đã kích thích polyADP-ribosylation của protein PARP-1 và ức chế sự tương tác của nó với TCF-4. Bleomycin ngược lại đã làm tăng lượng Ku70 đồng miễn dịch tác động với TCF-4 và loại bỏ β-catenin ra khỏi TCF-4. Chúng tôi đề xuất một mô hình hoạt động trong đó hoạt động phiên mã của TCF-4 được điều chỉnh bởi lượng tương đối của các protein Ku70, PARP-1 và β-catenin liên kết với TCF-4. Việc xác định sự tương tác chức năng của Ku70 cũng như PARP-1 với phức hợp phiên mã TCF-4 và β-catenin có thể cung cấp hiểu biết thêm về mối liên kết mới giữa nhận diện/ sửa chữa tổn thương DNA và tín hiệu Wnt. [Cancer Res 2007;67(3):911–8]

Từ khóa


Tài liệu tham khảo

Peifer M, Polakis P. Wnt signaling in oncogenesis and embryogenesis—a look outside the nucleus. Science 2000; 287: 1606–9.

Nelson WJ, Nusse R. Convergence of Wnt, β-catenin, and cadherin pathways. Science 2004; 303: 1483–7.

Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med 2004; 10: 789–99.

Aberle H, Bauer A, Stappert J, Kispert A, Kemler R. β-Catenin is a target for the ubiquitin-proteasome pathway. EMBO J 1997; 16: 3797–804.

Munemitsu S, Albert I, Souza B, Rubinfeld B, Polakis P. Regulation of intracellular β-catenin levels by the adenomatous polyposis coli (APC) tumor-suppressor protein. Proc Natl Acad Sci U S A 1995; 92: 3046–50.

Fearnhead NS, Britton MP, Bodmer WF. The ABC of APC. Hum Mol Genet 2001; 10: 721–33.

Behrens J, von Kries JP, Kuhl M, et al. Functional interaction of β-catenin with the transcription factor LEF-1. Nature 1996; 382: 638–42.

Korinek V, Barker N, Morin PJ, et al. Constitutive transcriptional activation by a β-catenin-Tcf complex in APC−/− colon carcinoma. Science 1997; 275: 1784–7.

Korinek V, Barker N, Moerer P, et al. Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nat Genet 1998; 19: 379–83.

van de Wetering M, Sancho E, Verweij C, et al. The β-catenin/TCF-4 complex imposes a crypt progenitor phenotype on colorectal cancer cells. Cell 2002; 111: 241–50.

Idogawa M, Yamada T, Honda K, Sato S, Imai K, Hirohashi S. Poly(ADP-ribose) polymerase-1 is a component of the oncogenic T-cell factor-4/β-catenin complex. Gastroenterology 2005; 128: 1919–36.

de Murcia G, Menissier de Murcia J. Poly(ADP-ribose) polymerase: a molecular nick-sensor. Trends Biochem Sci 1994; 19: 172–6.

Herceg Z, Wang ZQ. Functions of poly(ADP-ribose) polymerase (PARP) in DNA repair, genomic integrity and cell death. Mutat Res 2001; 477: 97–110.

Kim MY, Mauro S, Gevry N, Lis JT, Kraus WL. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 2004; 119: 803–14.

Mimori T, Akizuki M, Yamagata H, Inada S, Yoshida S, Homma M. Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest 1981; 68: 611–20.

Dynan WS, Yoo S. Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 1998; 26: 1551–9.

Lieber MR, Ma Y, Pannicke U, Schwarz K. Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003; 4: 712–20.

Downs JA, Jackson SP. A means to a DNA end: the many roles of Ku. Nat Rev Mol Cell Biol 2004; 5: 367–78.

Osada T, Sakamoto M, Ino Y, et al. E-cadherin is involved in the intrahepatic metastasis of hepatocellular carcinoma. Hepatology 1996; 24: 1460–7.

Masutani M, Suzuki H, Kamada N, et al. Poly(ADP-ribose) polymerase gene disruption conferred mice resistant to streptozotocin-induced diabetes. Proc Natl Acad Sci U S A 1999; 96: 2301–4.

Sato S, Idogawa M, Honda K, et al. β-catenin interacts with the FUS proto-oncogene product and regulates pre-mRNA splicing. Gastroenterology 2005; 129: 1225–36.

Seike M, Kondo T, Mori Y, et al. Proteomic analysis of intestinal epithelial cells expressing stabilized β-catenin. Cancer Res 2003; 63: 4641–7.

Walker JR, Corpina RA, Goldberg J. Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 2001; 412: 607–14.

Li B, Navarro S, Kasahara N, Comai L. Identification and biochemical characterization of a Werner's syndrome protein complex with Ku70/80 and poly(ADP-ribose) polymerase-1. J Biol Chem 2004; 279: 13659–67.

Rigas B, Borgo S, Elhosseiny A, et al. Decreased expression of DNA-dependent protein kinase, a DNA repair protein, during human colon carcinogenesis. Cancer Res 2001; 61: 8381–4.

Giffin W, Torrance H, Rodda DJ, Prefontaine GG, Pope L, Hache RJ. Sequence-specific DNA binding by Ku autoantigen and its effects on transcription. Nature 1996; 380: 265–8.

Maldonado E, Shiekhattar R, Sheldon M, et al. A human RNA polymerase II complex associated with SRB and DNA-repair proteins. Nature 1996; 381: 86–9.

Kuhn A, Gottlieb TM, Jackson SP, Grummt I. DNA-dependent protein kinase: a potent inhibitor of transcription by RNA polymerase I. Genes Dev 1995; 9: 193–203.

Dvir A, Stein LY, Calore BL, Dynan WS. Purification and characterization of a template-associated protein kinase that phosphorylates RNA polymerase II. J Biol Chem 1993; 268: 10440–7.

Iijima S, Teraoka H, Date T, Tsukada K. DNA-activated protein kinase in Raji Burkitt's lymphoma cells. Phosphorylation of c-Myc oncoprotein. Eur J Biochem 1992; 206: 595–603.

Bannister AJ, Gottlieb TM, Kouzarides T, Jackson SP. c-Jun is phosphorylated by the DNA-dependent protein kinase in vitro; definition of the minimal kinase recognition motif. Nucleic Acids Res 1993; 21: 1289–95.

Singleton BK, Torres-Arzayus MI, Rottinghaus ST, Taccioli GE, Jeggo PA. The C terminus of Ku80 activates the DNA-dependent protein kinase catalytic subunit. Mol Cell Biol 1999; 19: 3267–77.

Sucharov CC, Helmke SM, Langer SJ, Perryman MB, Bristow M, Leinwand L. The Ku protein complex interacts with YY1, is up-regulated in human heart failure, and represses α myosin heavy-chain gene expression. Mol Cell Biol 2004; 24: 8705–15.

Galande S, Kohwi-Shigematsu T. Poly(ADP-ribose) polymerase and Ku autoantigen form a complex and synergistically bind to matrix attachment sequences. J Biol Chem 1999; 274: 20521–8.