Kolaviron, hợp chất biflavonoid từ Garcinia kola, bảo vệ chống lại tổn thương do thiếu máu/reperfusion: Những hiểu biết cơ chế liên quan từ các đánh giá sinh hóa và vật lý trong não chuột.

Neurochemical Research - Tập 40 - Trang 777-787 - 2015
Afolabi C. Akinmoladun1,2, Bolanle L. Akinrinola1, M. Tolulope Olaleye1, Ebenezer O. Farombi3
1Department of Biochemistry, The Federal University of Technology, School of Sciences, Akure, Nigeria
2Ciencias Biologicas-biofisica, Instituto de Biofisica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
3Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria

Tóm tắt

Tính sinh lý bệnh của đột quỵ được đặc trưng bởi những biến đổi sinh hóa và vật lý trong não. Việc điều chỉnh những biến đổi này bằng các tác nhân điều trị cung cấp các hiểu biết về cơ chế hoạt động của chúng. Bằng chứng không thể chối cãi cho thấy stress oxy hóa liên quan đến sinh lý bệnh của các rối loạn thần kinh đã đưa các hợp chất chống oxy hóa, đặc biệt là các hóa chất thực vật, vào tầm ngắm ngày càng tăng như là những biện pháp tiềm năng cho việc phòng ngừa và quản lý các bệnh thoái hóa thần kinh. Kolaviron, một hợp chất biflavonoid được chiết xuất từ Garcinia kola Heckel (Guttiferae) đã được đánh giá về khả năng bảo vệ thần kinh trong não của chuột đực Wistar bị tổn thương thiếu máu/reperfusion toàn thân do tắc động mạch cảnh chung hai bên. Các động vật được chia thành sáu nhóm: nhóm giả dược, nhóm sử dụng dung môi (I/R), 50 mg/kg kolaviron + I/R, 100 mg/kg kolaviron + I/R, 200 mg/kg kolaviron + I/R và quercetin (20 mg/kg tiêm trong bụng) + I/R. Các động mạch cảnh chung đã bị tắc trong 30 phút, tiếp theo là 2 giờ reperfusion. Trọng lượng não tương đối và hàm lượng nước trong não đã được xác định và stress oxy hóa cũng như các dấu hiệu sinh hóa thần kinh cũng được đánh giá. I/R đã gây ra sự giảm đáng kể mức glutathione và hoạt động của các chất chống oxy hóa enzym, bơm natri và acetylcholinesterase, trong khi những gia tăng đáng kể đã được ghi nhận trong trọng lượng não tương đối, hàm lượng nước trong não, quá trình peroxid hóa lipid và hoạt động của glutamine synthetase và myeloperoxidase. Có sự giảm mạnh các dấu hiệu stress oxy hóa, các biến đổi sinh hóa thần kinh và phù não do I/R ở các động vật đã được điều trị trước bằng kolaviron. Các kết quả gợi ý rằng sự bảo vệ mà kolaviron mang lại có khả năng liên quan đến việc điều chỉnh cân bằng redox và điện giải cũng như cơ chế chống viêm và chống độc tố kích thích.

Từ khóa

#Kolaviron #thiếu máu #reperfusion #tác nhân chống oxy hóa #bệnh thoái hóa thần kinh

Tài liệu tham khảo

Eastman P (2003) Why neuroprotective drugs fail: question about cell death present new challenges. Neurol Today 3:18–19 Gupta YK, Briyal S, Gulati A (2010) Therapeutic potential of herbal drugs in cerebral ischemia. Indian J Physiol Pharmacol 54:99–122 Miniño AM, Xu J, Kochanek KD (2010) Deaths: preliminary data for 2008. Natl Vital Stat Rep 59:1–52 Towfighi A, Saver JL (2011) Stroke declines from third to fourth leading cause of death in the US: historical perspective and challenges ahead. Stroke 42:2351–2355 Shigehatake Y, Yokota C, Amano T et al (2014) Stroke education using an animated cartoon and a manga for junior high school students. J Stroke Cerebrovasc Dis 23:1623–1627 Fang MC, Coca Perraillon M, Ghosh K et al (2014) Trends in stroke rates, risk, and outcomes in the US, 1988–2008. Am J Med 127:608–615 Hankey GJ (2014) Secondary stroke prevention. Lancet Neurol 13:178–194 Ahmed MAE, El Morsy EM, Ahmed AAE (2014) Pomegranate extract protects against cerebral ischemia/reperfusion injury and preserves brain DNA integrity in rats. Life Sci 110:61–69 Qu X, Qi D, Dong F et al (2014) Quercetin improves hypoxia-ischemia induced cognitive deficits via promoting remyelination in neonatal rat. Brain Res 1553:31–40 Iwu M, Igboko O (1982) Flavonoids of Garcinia kola Seeds. J Nat Prod 45:650–651 EO Farombi (2003) Locally derived natural antioxidant substances in Nigeria: potential role as new chemotherapeutic agents. In: T. Theeshan Bahorun, Gurib-Fakim (eds.) Molecular and therapeutic aspects of redox biochemistry. OICA International (UK) Limited, London pp 207–226 Adedara IA, Awogbindin IO, Anamelechi JP, Farombi EO (2014) Garcinia kola seed ameliorates renal, hepatic, and testicular oxidative damage in streptozotocin-induced diabetic rats. Pharm Biol. doi:10.3109/13880209.2014.937504 Farombi EO (2000) Mechanisms for the hepatoprotective action of kolaviron: studies on hepatic enzymes, microsomal lipids and lipid peroxidation in carbontetrachloride-treated rats. Pharmacol Res 42:75–80 Farombi EO, Tahnteng JG, Agboola AO et al (2000) Chemoprevention of 2-acetylaminofluorene-induced hepatotoxicity and lipid peroxidation in rats by kolaviron–a Garcinia kola seed extract. Food Chem Toxicol 38:535–541 Farombi EO, Adepoju BF, Ola-Davies OE, Emerole GO (2005) Chemoprevention of aflatoxin B1-induced genotoxicity and hepatic oxidative damage in rats by kolaviron, a natural bioflavonoid of Garcinia kola seeds. Eur J Cancer Prev 14:207–214 Farombi EO, Alabi MC, Akuru TO (2002) Kolaviron modulates cellular redox status and impairment of membrane protein activities induced by potassium bromate (KBrO(3)) in rats. Pharmacol Res 45:63–68 Farombi EO, Abarikwu SO, Adedara IA, Oyeyemi MO (2007) Curcumin and kolaviron ameliorate di-n-butylphthalate-induced testicular damage in rats. Basic Clin Pharmacol Toxicol 100:43–48 Adaramoye OA, Akanni OO, Farombi EO (2013) Nevirapine induces testicular toxicity in Wistar rats: reversal effect of kolaviron (biflavonoid from Garcinia kola seeds). J Basic Clin Physiol Pharmacol 24:313–320 Adedara IA, Vaithinathan S, Jubendradass R, Mathur PP, Farombi EO (2013) Kolaviron prevents carbendazim-induced steroidogenic dysfunction and apoptosis in testes of rats. Environ Toxicol Pharmacol 35:444–453 Adaramoye OA, Lawal SO (2014) Kolaviron, a biflavonoid fraction from Garcinia kola, protects against isoproterenol-induced injury by mitigating cardiac dysfunction and oxidative stress in rats. J Basic Clin Physiol Pharmacol. doi:10.1515/jbcpp-2013-0139 Nwankwo JO, Tahnteng JG, Emerole GO (2000) Inhibition of aflatoxin B1 genotoxicity in human liver-derived HepG2 cells by kolaviron biflavonoids and molecular mechanisms of action. Eur J Cancer Prev 9:351–361 Abarikwu SO, Farombi EO, Kashyap MP, Pant AB (2011) Kolaviron protects apoptotic cell death in PC12 cells exposed to atrazine. Free Radic Res 45:1061–1073 Abarikwu SO, Farombi EO, Pant AB (2012) Kolaviron biflavanoids of Garcinia kola seeds protect atrazine-induced cytotoxicity in primary cultures of rat Leydig cells. Int J Toxicol 31:407–415 Abarikwu SO (2014) Kolaviron, a natural flavonoid from the seeds of Garcinia kola, reduces LPS-induced inflammation in macrophages by combined inhibition of IL-6 secretion, and inflammatory transcription factors, ERK1/2, NF-κB, p38, Akt, p-c-JUN and JNK. Biochim Biophys Acta 1840:2373–2381 Iwu MM (1985) Antihepatoxic constituents of Garcinia kola seeds. Experientia 41:699–700 Farombi EO, Shrotriya S, Surh Y-J (2009) Kolaviron inhibits dimethyl nitrosamine-induced liver injury by suppressing COX-2 and iNOS expression via NF-kappaB and AP-1. Life Sci 84:149–155 Mansoorali KP, Prakash T, Kotresha D et al (2012) Cerebroprotective effect of Eclipta alba against global model of cerebral ischemia induced oxidative stress in rats. Phytomedicine 19:1108–1116 Farbiszewski R, Bielawski K, Bielawska A, Sobaniec W (1995) Spermine protects in vivo the antioxidant enzymes in transiently hypoperfused rat brain. Acta Neurobiol Exp (Wars) 55:253–258 Fotheringham AP, Davies CA, Davies I (2000) Oedema and glial cell involvement in the aged mouse brain after permanent focal ischaemia. Neuropathol Appl Neurobiol 26:412–423 Mishra V, Verma R, Raghubir R (2010) Neuroprotective effect of flurbiprofen in focal cerebral ischemia: the possible role of ASIC1a. Neuropharmacology 59:582–588 Saad MA, Abdelsalam RM, Kenawy SA, Attia AS (2014) Montelukast, a cysteinyl leukotriene receptor-1 antagonist protects against hippocampal injury induced by transient global cerebral ischemia and reperfusion in rats. Neurochem Res. doi:10.1007/s11064-014-1478-9 Weichselbaum TE (1946) An accurate and rapid method for determination of proteins in small amounts of blood serum and plasma. Am J Clin Pathol 16:40–49 Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem 239:70–76 Beutler E, Duron O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888 Rotruck JT, Pope AL, Ganther HE et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590 Misra HP, Fridovich I (1972) The univalent reduction of oxygen by reduced flavins and quinones. J Biol Chem 247:188–192 Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394 Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358 Ellman GL, Courtney KD, Andres V, Feather-Stone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95 Svoboda P, Mosinger B (1981) Catecholamines and the brain microsomal Na, K-adenosinetriphosphatase—I. Protection against lipoperoxidative damage. Biochem Pharmacol 30:427–432 Sunil AG, Kesavanarayanan KS, Kalaivani P et al (2011) Total oligomeric flavonoids of Cyperus rotundus ameliorates neurological deficits, excitotoxicity and behavioral alterations induced by cerebral ischemic-reperfusion injury in rats. Brain Res Bull 84:394–405 Sadasivam S, Manickam A (2003) Biochemical methods, 2nd ed. New Delhi Eiserich JP, Hristova M, Cross CE et al (1998) Formation of nitric oxide-derived inflammatory oxidants by myeloperoxidase in neutrophils. Nature 391:393–397 Ozkul A, Sair A, Akyol A et al (2014) Effects of lithium and lamotrigine on oxidative-nitrosative stress and spatial learning deficit after global cerebral ischemia. Neurochem Res 39:853–861 Durukan A, Tatlisumak T (2007) Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav 87:179–197 Wang J, Jin H, Hua Y et al (2012) Role of protease-activated receptor-1 in brain injury after experimental global cerebral ischemia. Stroke 43:2476–2482 Radenovic L, Selakovic V, Olivan S et al (2014) Neuroprotective efficiency of tetanus toxin C fragment in model of global cerebral ischemia in Mongolian gerbils. Brain Res Bull 101(37–44):48 Martin RL, Lloyd HG, Cowan AI (1994) The early events of oxygen and glucose deprivation: setting the scene for neuronal death? Trends Neurosci 17:251–257 Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22:391–397 Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568 Ozkul A, Akyol A, Yenisey C et al (2007) Oxidative stress in acute ischemic stroke. J Clin Neurosci 14:1062–1066 Homi HM, Freitas JJS, Curi R et al (2002) Changes in superoxide dismutase and catalase activities of rat brain regions during early global transient ischemia/reperfusion. Neurosci Lett 333:37–40 Breckwoldt MO, Chen JW, Stangenberg L et al (2008) Tracking the inflammatory response in stroke in vivo by sensing the enzyme myeloperoxidase. Proc Natl Acad Sci USA 105:18584–18589 Park JH, Kyu PO, Cho JH et al (2014) Anti-inflammatory effect of tanshinone I in neuroprotection against cerebral ischemia-reperfusion injury in the gerbil hippocampus. Neurochem Res 39:1300–1312 Guo H, Li M, Liu Q et al (2014) Danhong injection attenuates ischemia/reperfusion-induced brain damage which is associating with Nrf2 levels in vivo and in vitro. Neurochem Res 39:1817–1824 Collino M, Aragno M, Mastrocola R et al (2006) Modulation of the oxidative stress and inflammatory response by PPAR-gamma agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol 530:70–80 Read SJ, Hirano T, Davis SM, Donnan GA (1999) Limiting neurological damage after stroke: a review of pharmacological treatment options. Drugs Aging 14:11–39 Erecińska M, Silver IA (2001) Tissue oxygen tension and brain sensitivity to hypoxia. Respir Physiol 128:263–276 Saito A, Maier CM, Narasimhan P et al (2005) Oxidative stress and neuronal death/survival signaling in cerebral ischemia. Mol Neurobiol 31:105–116 Adibhatla RM, Hatcher JF (2008) Altered lipid metabolism in brain injury and disorders. Subcell Biochem 49:241–268 Koner BC, Banerjee BD, Ray A (1998) Organochlorine pesticide-induced oxidative stress and immune suppression in rats. Indian J Exp Biol 36:395–398. as new chemotherapeutic agents. In: Theeshan Bahorun, T., Gurib-Fakim A (Eds.) Molecular and Therapeutic Aspects of Redox Biochemistry. OICA International (UK) Limited, London pp 207–226 Tuna M, Polat S, Erman T et al (2001) Effect of anti-rat interleukin-6 antibody after spinal cord injury in the rat: inducible nitric oxide synthase expression, sodium- and potassium-activated, magnesium-dependent adenosine-5′-triphosphatase and superoxide dismutase activation, and ultrastructural changes. J Neurosurg 95:64–73 Mrsić-Pelcić J, Pelcić G, Vitezić D et al (2004) Hyperbaric oxygen treatment: the influence on the hippocampal superoxide dismutase and Na + , K + -ATPase activities in global cerebral ischemia-exposed rats. Neurochem Int 44:585–594 Zhao T, Zhang X, Zhao Y et al (2014) Pretreatment by evodiamine is neuroprotective in cerebral ischemia: up-regulated pAkt, pGSK3β, down-regulated NF-κB expression, and ameliorated BBB permeability. Neurochem Res 39:1612–1620 Farombi EO, Adedara IA, Ajayi BO et al (2013) Kolaviron, a natural antioxidant and anti-inflammatory phytochemical prevents dextran sulphate sodium-induced colitis in rats. Basic Clin Pharmacol Toxicol 113:49–55 Iwu MM (1986) Biflavanones of Garcinia: pharmacological and biological activities. Prog Clin Biol Res 213:485–488 Chelluboina B, Klopfenstein JD, Pinson DM et al (2014) Stem cell treatment after cerebral ischemia regulates the gene expression of apoptotic molecules. Neurochem Res 39:1511–1521