Kinetoplastid Membrane Protein-11 DNA Vaccination Induces Complete Protection against Both Pentavalent Antimonial-Sensitive and -Resistant Strains of <i>Leishmania donovani</i> That Correlates with Inducible Nitric Oxide Synthase Activity and IL-4 Generation: Evidence for Mixed Th1- and Th2-Like Responses in Visceral Leishmaniasis

Journal of Immunology - Tập 174 Số 11 - Trang 7160-7171 - 2005
Rajatava Basu1, Suniti Bhaumik1, Jayati Basu1, Kshudiram Naskar1, Tanmay De1, Syamal Roy1
1Department of Immunology, Indian Institute of Chemical Biology, Kolkata, India.

Tóm tắt

Abstract The emergence of an increasing number of Leishmania donovani strains resistant to pentavalent antimonials (SbV), the first line of treatment for visceral leishmaniasis worldwide, accounts for decreasing efficacy of chemotherapeutic interventions. A kinetoplastid membrane protein-11 (KMP-11)-encoding construct protected extremely susceptible golden hamsters from both pentavalent antimony responsive (AG83) and antimony resistant (GE1F8R) virulent L. donovani challenge. All the KMP-11 DNA vaccinated hamsters continued to survive beyond 8 mo postinfection, with the majority showing sterile protection. Vaccinated hamsters showed reversal of T cell anergy with functional IL-2 generation along with vigorous specific anti-KMP-11 CTL-like response. Cytokines known to influence Th1- and Th2-like immune responses hinted toward a complex immune modulation in the presence of a mixed Th1/Th2 response in conferring protection against visceral leishmaniasis. KMP-11 DNA vaccinated hamsters were protected by a surge in IFN-γ, TNF-α, and IL-12 levels along with extreme down-regulation of IL-10. Surprisingly the prototype candidature of IL-4, known as a disease exacerbating cytokine, was found to have a positive correlation to protection. Contrary to some previous reports, inducible NO synthase was actively synthesized by macrophages of the protected hamsters with concomitant high levels of NO production. This is the first report of a vaccine conferring protection to both antimony responsive and resistant Leishmania strains reflecting several aspects of clinical visceral leishmaniasis.

Từ khóa


Tài liệu tham khảo

Carvalho, E. M., R. S. Teixeira, W. D. Johnson, Jr. 1981. Cell-mediated immunity in American visceral leishmaniasis: reversible immunosuppression during acute infection. Infect. Immun. 33: 498-502.

Carvalho, E. M., R. Badaro, S. G. Reed, T. C. Jones, W. D. Johnson, Jr. 1985. Absence of γ interferon and interleukin 2 production during active visceral leishmaniasis. J. Clin. Invest. 76: 2066-2069.

Pintado, V., P. Martín-Rabadán, M. L. Rivera, S. Moreno, E. Bouza. 2001. Visceral leishmaniasis in human immunodeficiency virus (HIV)-infected and non-HIV-infected patients: a comparative study. Medicine (Baltimore) 80: 54-73.

United Nations Development Program/World Bank/World Health Organization Special Programme for Research and Training in Tropical Diseases  1989. Tropical diseases: Progress in International Research, 1987–1988  128 UNDP/WB/WHO, Geneva, Switzerland. Ninth Programme Report.. .

Melby, P. C., G. B. Ogden, H. A. Flores, W. Zhao, C. Geldmacher, N. M. Biediger, S. K. Ahuja, J. Uranga, M. Melendez. 2000. Identification of vaccine candidates for experimental visceral leishmaniasis by immunization with sequential fractions of a cDNA expression library. Infect. Immun. 68: 5595-5602.

Kafetzis, D. A., H. C. Maltezou. 2002. Visceral leishmaniasis in paediatrics. Curr. Opin. Infect. Dis. 15: 289-294.

Murray, H. W.. 2001. Clinical and experimental advances in treatment of visceral leishmaniasis. Antimicrob. Agents Chemother. 45: 2185-2197.

Sundar, S., D. K. More, M. K. Singh, V. P. Singh, S. Sharma, A. Makharia, P. C. Kumar, H. W. Murray. 2000. Failure of pentavalent antimony in visceral leishmaniasis in India: report from the center of the Indian epidemic. Clin. Infect. Dis. 31: 1104-1107.

Perez-Victoria, J. M., F. J. Perez-Victoria, A. Parodi-Talice, I. A. Jimenez, A. G. Ravelo, S. Castanys, F. Gamarro. 2001. Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob. Agents Chemother. 45: 2468-2474.

Liew, F. Y., C. A. O’Donnell. 1993. Immunology of leishmaniasis. Adv. Parasitol. 32: 161-259.

Bottrel, R. L., W. O. Dutra, F. A. Martins, B. Gontijo, E. Carvalho, M. Barral-Netto, A. Barral, R. P. Almeida, W. Mayrink, R. Locksley, K. J. Gollob. 2001. Flow cytometric determination of cellular sources and frequencies of key cytokine-producing lymphocytes directed against recombinant LACK and soluble Leishmania antigen in human cutaneous leishmaniasis. Infect. Immun. 69: 3232-3239.

Melby, P. C., V. V. Tryon, B. Chandrasekar, G. L. Freeman. 1998. Cloning of Syrian hamster (Mesocricetus auratus) cytokine cDNAs and analysis of cytokine mRNA expression in experimental visceral leishmaniasis. Infect. Immun. 66: 2135-2142.

Jardim, A., S. Hanson, B. Ullman, W. D. McCubbin, C. M. Kay, R. W. Olafson. 1995. Cloning and structure-function analysis of the Leishmania donovani kinetoplastid membrane protein-11. Biochem. J. 305: 315-320.

Jardim, A., V. Funk, R. M. Caprioli, R. W. Olafson. 1995. Isolation and structural characterization of the Leishmania donovani kinetoplastid membrane protein-11, a major immunoreactive membrane glycoprotein. Biochem. J. 305: 307-313.

Berberich, C., G. Machado, G. Morales, G. Carrillo, A. Jimenez-Ruiz, C. Alonso. 1998. The expression of the Leishmania infantum KMP-11 protein is developmentally regulated and stage specific. Biochim. Biophys. Acta 1442: 230-237.

Mukhopadhyay, S., P. Sen, S. Bhattacharyya, S. Majumdar, S. Roy. 1999. Immunoprophylaxis and immunotherapy against experimental visceral leishmaniasis. Vaccine 17: 291-300.

Kurtzhals, J. A., A. S. Hey, A. Jardim, M. Kemp, K. U. Schaefer, E. O. Odera, C. B. Christensen, J. I. Githure, R. W. Olafson, T. G. Theander, et al 1994. Dichotomy of the human T cell response to Leishmania antigens. II. Absent or Th2-like response to gp63 and Th1-like response to lipophosphoglycan-associated protein in cells from cured visceral leishmaniasis patients. Clin. Exp. Immunol. 96: 416-421.

Requena, J. M., M. Soto, M. D. Doria, C. Alonso. 2000. Immune and clinical parameters associated with Leishmania infantum infection in the golden hamster model. Vet. Immunol. Immunopathol. 76: 269-281.

Kemp, M., A. S. Hey, J. A. Kurtzhals, C. B. Christensen, A. Gaafar, M. D. Mustafa, A. A. Kordofani, A. Ismail, A. Kharazmi, T. G. Theander. 1994. Dichotomy of the human T cell response to Leishmania antigens. I. Th1-like response to Leishmania major promastigote antigens in individuals recovered from cutaneous leishmaniasis. Clin. Exp. Immunol. 96: 410-415.

da Conceicao-Silva, F., B. L. Perlaza, J. A. Louis, P. Romero. 1994. Leishmania major infection in mice primes for specific major histocompatibility complex class I-restricted CD8+ cytotoxic T cell responses. Eur. J. Immunol. 24: 2813-2817.

Belkaid, Y., E. Von Stebut, S. Mendez, R. Lira, E. Caler, S. Bertholet, M. C. Udey, D. Sacks. 2002. CD8+ T cells are required for primary immunity in C57BL/6 mice following low-dose, intradermal challenge with Leishmania major. J. Immunol. 168: 3992-4000.

Gurunathan, S., D. L. Sacks, D. R. Brown, S. L. Reiner, H. Charest, N. Glaichenhaus, R. A. Seder. 1997. Vaccination with DNA encoding the immunodominant LACK parasite antigen confers protective immunity to mice infected with Leishmania major. J. Exp. Med. 186: 1137-1147.

Kaye, P. M., A. J. Curry, J. M. Blackwell. 1991. Differential production of Th1- and Th2-derived cytokines does not determine the genetically controlled or vaccine-induced rate of cure in murine visceral leishmaniasis. J. Immunol. 146: 2763-2770.

Kemp, K., M. Kemp, A. Kharazmi, A. Ismail, J. A. Kurtzhals, L. Hviid, T. G. Theander. 1999. Leishmania-specific T cells expressing interferon-γ (IFN-γ) and IL-10 upon activation are expanded in individuals cured of visceral leishmaniasis. Clin. Exp. Immunol. 116: 500-504.

Kemp, K.. 2000. Cytokine-producing T cell subsets in human leishmaniasis. Arch. Immunol. Ther. Exp. 48: 173-177.

Kupper, T., P. Flood, D. Coleman, M. Horowitz. 1987. Growth of an interleukin 2/interleukin 4-dependent T cell line induced by granulocyte-macrophage colony-stimulating factor (GM-CSF). J. Immunol. 138: 4288-4292.

Mukhopadhyay, R., R. Madhubala. 1994. Antileishmanial activity and modification of hepatic xenobiotic metabolizing enzymes in golden hamster by 2(3)-tert-butyl-4-hydroxyanisole following infection with Leishmania donovani. Biochem. Pharmacol. 47: 253-256.

Bhattacharyya, A., M. Mukherjee, S. Duttagupta. 2002. Studies on Stibanate unresponsive isolates of Leishmania donovani. J. Biosci. 27: 503-508.

McElrath, M. J., H. W. Murray, Z. A. Cohn. 1988. The dynamics of granuloma formation in experimental visceral leishmaniasis. J. Exp. Med. 167: 1927-1937.

Melby, P. C., B. Chandrasekar, W. Zhao, J. E. Coe. 2001. The hamster as a model of human visceral leishmaniasis: progressive disease and impaired generation of nitric oxide in the face of a prominent Th1-like cytokine response. J. Immunol. 166: 1912-1920.

Rodrigues Junior, V., J. S. Da Silva, A. Campos-Neto. 1992. Selective inability of spleen antigen presenting cells from Leishmania donovani infected hamsters to mediate specific T cell proliferation to parasite antigens. Parasite Immunol. 14: 49-58.

Roy, S., M. T. Scherer, T. J. Briner, J. A. Smith, M. L. Gefter. 1989. Murine MHC polymorphism and T cell specificities. Science 244: 572-575.

Mukherjee, S. B., M. Das, G. Sudhandiran, C. Shaha. 2002. Increase in cytosolic Ca2+ levels through the activation of non-selective cation channels induced by oxidative stress causes mitochondrial depolarization leading to apoptosis-like death in Leishmania donovani promastigotes. J. Biol. Chem. 277: 24717-24127.

Berberich, C., J. M. Requena, C. Alonso. 1997. Cloning of genes and expression and antigenicity analysis of the Leishmania infantum KMP-11 protein. Exp. Parasitol. 85: 105-108.

Murray, H. W., J. J. Stern, K. Welte, B. Y. Rubin, S. M. Carrier, C. F. Nathan. 1987. Experimental visceral leishmaniasis: production of interleukin 2 and interferon-γ, tissue immune reaction, and response to treatment with interleukin 2 and interferon-γ. J. Immunol. 138: 2290-2297.

Murray, H. W., J. Hariprashad, R. L. Coffman. 1997. Behavior of visceral Leishmania donovani in an experimentally induced T helper cell 2 (Th2)-associated response model. J. Exp. Med. 185: 867-874.

Taylor, A. P., H. W. Murray. 1997. Intracellular antimicrobial activity in the absence of interferon-γ: effect of interleukin-12 in experimental visceral leishmaniasis in interferon-γ gene-disrupted mice. J. Exp. Med. 185: 1231-1239.

Murray, H. W., A. Jungbluth, E. Ritter, C. Montelibano, M. W. Marino. 2000. Visceral leishmaniasis in mice devoid of tumor necrosis factor and response to treatment. Infect. Immun. 68: 6289-6293.

Murray, H. W., C. M. Lu, S. Mauze, S. Freeman, A. L. Moreira, G. Kaplan, R. L. Coffman. 2002. Interleukin-10 (IL-10) in experimental visceral leishmaniasis and IL-10 receptor blockade as immunotherapy. Infect. Immun. 70: 6284-6293.

Haldar, J. P., S. Ghose, K. C. Saha, A. C. Ghose. 1983. Cell-mediated immune response in Indian kala-azar and post-kala-azar dermal leishmaniasis. Infect. Immun. 42: 702-707.

Carvalho, E. M., O. Bacellar, C. Brownell, T. Regis, R. L. Coffman, S. G. Reed. 1994. Restoration of IFN-γ production and lymphocyte proliferation in visceral leishmaniasis. J. Immunol. 152: 5949-5956.

Gifawesen, C., J. P. Farrell. 1989. Comparison of T-cell responses in self-limiting versus progressive visceral Leishmania donovani infections in golden hamsters. Infect. Immun. 57: 3091-3096.

Reiner, N. E., J. H. Finke. 1983. Interleukin 2 deficiency in murine Leishmaniasis donovani and its relationship to depressed spleen cell responses to phytohemagglutinin. J. Immunol. 131: 1487-1491.

Cohen, A. D., J. D. Boyer, D. B. Weiner. 1998. Modulating the immune response to genetic immunization. FASEB J. 12: 1611-1626.

Wang, R., D. L. Doolan, T. P. Le, R. C. Hedstrom, K. M. Coonan, Y. Charoenvit, T. R. Jones, P. Hobart, M. Margalith, J. Ng, et al 1998. Induction of antigen-specific cytotoxic T lymphocytes in humans by a malaria DNA vaccine. Science 282: 476-480.

Kemp, M., J. A. Kurtzhals, K. Bendtzen, L. K. Poulsen, M. B. Hansen, D. K. Koech, A. Kharazmi, T. G. Theander. 1993. Leishmania donovani-reactive Th1- and Th2-like T-cell clones from individuals who have recovered from visceral leishmaniasis. Infect. Immun. 61: 1069-1073.

Schneemann, M., G. Schoedon, S. Hofer, N. Blau, L. Guerrero, A. Schaffner. 1993. Nitric oxide synthase is not a constituent of the antimicrobial armature of human mononuclear phagocytes. J. Infect. Dis. 167: 1358-1363.

Bhakuni, V., S. Kulkarni, V. Ali, U. K. Singh, H. B. Levy, R. K. Maheshwari. 1999. Immunochemotherapy for Leishmania donovani infection in golden hamsters: combinatorial action of poly ICLC plus l-arginine and sodium stibogluconate (Stibanate). J. Interferon Cytokine Res. 19: 1103-1106.

Green, S. J., R. M. Crawford, J. T. Hockmeyer, M. S. Meltzer, C. A. Nacy. 1990. Leishmania major amastigotes initiate the l-arginine-dependent killing mechanism in IFN-γ-stimulated macrophages by induction of tumor necrosis factor-α. J. Immunol. 145: 4290-4297.

Liew, F. Y., Y. Li, S. Millott. 1990. Tumor necrosis factor-α synergizes with IFN-γ in mediating killing of Leishmania major through the induction of nitric oxide. J. Immunol. 145: 4306-4310.

Liew, F. Y., Y. Li, S. Millott. 1990. Tumour necrosis factor (TNF-α) in leishmaniasis. II. TNF-α-induced macrophage leishmanicidal activity is mediated by nitric oxide from l-arginine. Immunology 71: 556-559.

Wei, X. Q., I. G. Charles, A. Smith, J. Ure, G. J. Feng, F. P. Huang, D. Xu, W. Muller, S. Moncada, F. Y. Liew. 1995. Altered immune responses in mice lacking inducible nitric oxide synthase. Nature 375: 408-411.

Shiloh, M. U., J. D. MacMicking, S. Nicholson, J. E. Brause, S. Potter, M. Marino, F. Fang, M. Dinauer, C. Nathan. 1999. Phenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity 10: 29-38.

Fang, F. C.. 1997. Perspectives series: host/pathogen interactions: mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Invest. 99: 2818-2825.

Jensen, A. T., S. Gasim, A. Ismail, A. Gaafar, J. A. Kurtzhals, M. Kemp, A. M. El Hassan, A. Kharazmi, T. G. Theander. 1998. Humoral and cellular immune responses to synthetic peptides of the Leishmania donovani kinetoplastid membrane protein-11. Scand. J. Immunol. 48: 103-109.

Sukumaran, B., P. Tewary, S. Saxena, R. Madhubala. 2003. Vaccination with DNA encoding ORFF antigen confers protective immunity in mice infected with Leishmania donovani. Vaccine 21: 1292-1299.

Melby, P. C., J. Yang, W. Zhao, L. E. Perez, J. Cheng. 2001. Leishmania donovani p36 (LACK) DNA vaccine is highly immunogenic but not protective against experimental visceral leishmaniasis. Infect. Immun. 69: 4719-4725.

Ghosh, A., S. Labrecque, G. Matlashewski. 2001. Protection against Leishmania donovani infection by DNA vaccination: increased DNA vaccination efficiency through inhibiting the cellular p53 response. Vaccine 19: 3169-3178.

Planelles, L., M. C. Thomas, C. Alonso, M. C. López. 2001. DNA immunization with Trypanosoma cruzi HSP70 fused to the KMP11 protein elicits a cytotoxic and humoral immune response against the antigen and leads to protection. Infect. Immun. 69: 6558-6563.

Saha, B., H. Nanda-Roy, A. Pakrashi, R. N. Chakrabarti, S. Roy. 1991. Immunobiological studies on experimental visceral leishmaniasis. I. Changes in lymphoid organs and their possible role in pathogenesis. Eur. J. Immunol. 21: 577-581.

Diefenbach, A., H. Schindler, M. Röllinghoff, W. M. Yokoyama, C. Bogdan. 1999. Requirement for type 2 NO synthase for IL-12 signaling in innate immunity. Science 284: 951-955.

Roach, T. I., A. F. Kiderlen, J. M. Blackwell. 1991. Role of inorganic nitrogen oxides and tumor necrosis factor α in killing Leishmania donovani amastigotes in γ interferon-lipopolysaccharide-activated macrophages from Lshs and Lshr congenic mouse strains. Infect. Immun. 59: 3935-3944.

Murray, H. W.. 1990. Effect of continuous administration of interferon-γ in experimental visceral leishmaniasis. J. Infect. Dis. 161: 992-994.

Murray, H. W., B. Y. Rubin, C. D. Rothermel. 1983. Killing of intracellular Leishmania donovani by lymphokine-stimulated human mononuclear phagocytes: evidence that interferon-γ is the activating lymphokine. J. Clin. Invest. 72: 1506-1510.

Barral-Netto, M., R. Badaro, A. Barral, R. P. Almeida, S. B. Santos, F. Badaro, D. Pedral-Sampaio, E. M. Carvalho, E. Falcoff, R. Falcoff. 1991. Tumor necrosis factor (cachectin) in human visceral leishmaniasis. J. Infect. Dis. 163: 853-857.

Ho, J. L., R. Badaro, A. Schwartz, C. A. Dinarello, J. A. Gelfand, J. Sobel, A. Barral, M. B. Netto, E. M. Carvalho, S. G. Reed, et al 1992. Diminished in vitro production of interleukin-1 and tumor necrosis factor-α during acute visceral leishmaniasis and recovery after therapy. J. Infect. Dis. 165: 1094-1102.

Pisa, P., M. Gennene, O. Soder, T. Ottenhoff, M. Hansson, R. Kiessling. 1990. Serum tumor necrosis factor levels and disease dissemination in leprosy and leishmaniasis. J. Infect. Dis. 161: 988-991.

Ghalib, H. W., M. R. Piuvezam, Y. A. Skeiky, M. Siddig, F. A. Hashim, A. M. el-Hassan, D. M. Russo, S. G. Reed. 1993. Interleukin 10 production correlates with pathology in human Leishmania donovani infections. J. Clin. Invest. 92: 324-329.

Karp, C. L., S. H. el-Safi, T. A. Wynn, M. M. Satti, A. M. Kordofani, F. A. Hashim, M. Hag-Ali, F. A. Neva, T. B. Nutman, D. L. Sacks. 1993. In vivo cytokine profiles in patients with kala-azar: marked elevation of both interleukin-10 and interferon-γ. J. Clin. Invest. 91: 1644-1648.

Murray, H. W., C. Montelibano, R. Peterson, J. P. Sypek. 2000. Interleukin-12 regulates the response to chemotherapy in experimental visceral Leishmaniasis. J. Infect. Dis. 182: 1497-1502.

Alexander, J., K. C. Carter, N. Al-Fasi, A. Satoskar, F. Brombacher. 2000. Endogenous IL-4 is necessary for effective drug therapy against visceral leishmaniasis. Eur. J. Immunol. 30: 2935-2943.

Kenney, R. T., D. L. Sacks, A. A. Gam, H. W. Murray, S. Sundar. 1998. Splenic cytokine responses in Indian kala-azar before and after treatment. J. Infect. Dis. 177: 815-818.

Kamogawa, Y., L. A. Minasi, S. R. Carding, K. Bottomly, R. A. Flavell. 1993. The relationship of IL-4- and IFN γ-producing T cells studied by lineage ablation of IL-4-producing cells. Cell 75: 985-995.

Schuler, T., Z. Qin, S. Ibe, N. Noben-Trauth, T. Blankenstein. 1999. T helper cell type 1-associated and cytotoxic T lymphocyte-mediated tumor immunity is impaired in interleukin 4-deficient mice. J. Exp. Med. 189: 803-810.

Platzer, C., G. Richter, K. Uberla, W. Muller, H. Blocker, T. Diamantstein, T. Blankenstein. 1992. Analysis of cytokine mRNA levels in interleukin-4-transgenic mice by quantitative polymerase chain reaction. Eur. J. Immunol. 22: 1179-1184.

D’Andrea, A., X. Ma, M. Aste-Amezaga, C. Paganin, G. Trinchieri. 1995. Stimulatory and inhibitory effects of interleukin (IL)-4 and IL-13 on the production of cytokines by human peripheral blood mononuclear cells: priming for IL-12 and tumor necrosis factor α production. J. Exp. Med. 181: 537-546.

Satoskar, A., H. Bluethmann, J. Alexander. 1995. Disruption of the murine interleukin-4 gene inhibits disease progression during Leishmania mexicana infection but does not increase control of Leishmania donovani infection. Infect. Immun. 63: 4894-4899.

Kolb, J. P., N. Paul-Eugene, C. Damais, K. Yamaoka, J. C. Drapier, B. Dugas. 1994. Interleukin-4 stimulates cGMP production by IFN-γ-activated human monocytes: involvement of the nitric oxide synthase pathway. J. Biol. Chem. 269: 9811-9816.

Bogdan, C., S. Stenger, M. Rollinghoff, W. Solbach. 1991. Cytokine interactions in experimental cutaneous leishmaniasis: interleukin 4 synergizes with interferon-γ to activate murine macrophages for killing of Leishmania major amastigotes. Eur. J. Immunol. 21: 327-333.

McGuire, K. L., W. R. Duncan, P. W. Tucker. 1985. Syrian hamster DNA shows limited polymorphism at class I-like loci. Immunogenetics 22: 257-268.