Kinetics of competitive cometabolism under aerobic conditions

Water-Energy Nexus - Tập 3 - Trang 62-70 - 2020
Michael H. Kim1, Chihhao Fan2, Shu-Yuan Pan2, Ingyu Lee3, YuPo Lin3, Hyunook Kim4
1Geo-Centers, Inc, PO Box 68, APG, MD 21010, USA
2Department of Bioenvironmental Systems Engineering, National Taiwan University, Taiwan
3Argonne National Laboratory, Lemont, IL 60439 USA
4Department of Environmental Engineering, University of Seoul, South Korea

Tài liệu tham khảo

Alvarez-Cohen, 1991, A Cometabolic Biotransformation Model for Halogenated Aliphatic-Compounds Exhibiting Product Toxicity, Environ. Sci. Technol., 25, 1381, 10.1021/es00020a003 Alvarez-Cohen, 2001, Kinetics of aerobic cometabolism of chlorinated solvents, Biodegradation, 12, 105, 10.1023/A:1012075322466 Alves, 2018, Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes, Nat. Commun., 9, 1517, 10.1038/s41467-018-03861-1 Broholm, 1992, Modeling Tce Degradation by a Mixed Culture of Methane-Oxidizing Bacteria, Water Res., 26, 1177, 10.1016/0043-1354(92)90178-7 Broholm, 1990, Toxicity of 1,1,1-Trichloroethane and Trichloroethene on a Mixed Culture of Methane-Oxidizing Bacteria, Appl. Environ. Microbiol., 56, 2488, 10.1128/AEM.56.8.2488-2493.1990 Charng, 1993, Kinetics of competitive inhibition and cometabolism in the biodegradation of benzene, toluene, and p-xylene by two Pseudomonas isolates, Biotechnol. Bioeng., 41, 1057, 10.1002/bit.260411108 Chheda, 2017, Evaluation of co-metabolic removal of trichloroethylene in a biotrickling filter under acidic conditions, J. Environ. Sci. (China), 57, 54, 10.1016/j.jes.2016.12.008 Criddle, 1993, The kinetics of cometabolism, Biotechnol Bioeng, 41, 1048, 10.1002/bit.260411107 Dorn, 1978, Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol, Biochem. J., 174, 85, 10.1042/bj1740085 Ely, 1995, A cometabilic kinetics model incorporating enzyme inhbition, inactivation, and recovery: I. Model development, analysis, and testing, Biotechnol. Bioeng., 46, 218, 10.1002/bit.260460305 Goudar, 2012, An explicit expression for determining cometabolism kinetics using progress curve analysis, J. Biotechnol., 159, 56, 10.1016/j.jbiotec.2012.02.009 Hao, 2002, Kinetics of phenol and chlorophenol utilization by Acinetobacter species, Chemosphere, 46, 797, 10.1016/S0045-6535(01)00182-5 Juang, 2006, Growth kinetics of Pseudomonas putida in the biodegradation of single and mixed phenol and sodium salicylate, Biochem. Eng. J., 31, 133, 10.1016/j.bej.2006.05.025 Jun, 2019, Aerobic denitrification by a novel Pseudomonas sp. JN5 in different bioreactor systems, Water-Energy Nexus, 2, 37, 10.1016/j.wen.2020.02.001 Kim, M.H. 1995. Acinetobacter: Classification and Cometabolism of Chlorophenols, Vol. Ph.D., University of Maryland. U.S.A. Kim, 2018, Continuous fed-batch alternating aerobic and anoxic system for biodegradationof Decontaminating Solution 2 with high nitrogen content, Water-Energy Nexus, 1, 47, 10.1016/j.wen.2018.05.002 Kim, 2014, Enhancing trichloroethylene degradation using non-aromatic compounds as growth substrates, J. Hazard. Mater., 275, 99, 10.1016/j.jhazmat.2014.04.052 Kohler, 1988, Cometabolism of polychlorinated biphenyls: enhanced transformation of Aroclor 1254 by growing bacterial cells, Appl. Environ. Microbiol., 54, 1940, 10.1128/AEM.54.8.1940-1945.1988 Li, 2014, Aerobic degradation of trichloroethylene by co-metabolism using phenol and gasoline as growth substrates, Int. J. Mol. Sci., 15, 9134, 10.3390/ijms15059134 Liu, 2015, Evaluating Alternate Biokinetic Models for Trace Pollutant Cometabolism, Environ. Sci. Technol., 49, 2230, 10.1021/es5035393 Liu, 2009, Kinetics of cometabolic degradation of 2-chlorophenol and phenol by Pseudomonas putida, Water Sci. Eng., 2, 110 Lohani, 2018, Modeling temperature effects in anaerobic digestion of domestic wastewater, Water-Energy Nexus, 1, 56, 10.1016/j.wen.2018.07.001 Menke, 1992, Degradation of Mixtures of Monochlorophenols and Phenol as Substrates for Free and Immobilized Cells of Alcaligenes Sp A7–2, Appl. Microbiol. Biotechnol., 37, 655, 10.1007/BF00240744 Nabavi, 2013, Biological treatment of polychlorinated biphenyls (PCBs) contaminated transformer oil by anaerobic–aerobic sequencing batch biofilm reactors, Int. Biodeterior. Biodegr., 85, 451, 10.1016/j.ibiod.2013.09.007 Nishino, 2013, Cytochrome P450 initiates degradation of cis-dichloroethene by Polaromonas sp. strain JS666, Appl. Environ. Microbiol., 79, 2263, 10.1128/AEM.03445-12 Nitisakulkan, 2014, Degradation of chloroanilines by toluene dioxygenase from Pseudomonas putida T57, J Biosci. Bioeng., 117, 292, 10.1016/j.jbiosc.2013.08.012 Pieja, 2011, Poly-3-hydroxybutyrate metabolism in the type II methanotroph Methylocystis parvus OBBP, Appl. Environ. Microbiol., 77, 6012, 10.1128/AEM.00509-11 Polnisch, 1992, Degradation and Dehalogenation of Monochlorophenols by the Phenol-assimilating Yeast Candida maltosa, Biodegradation, 2, 193, 10.1007/BF00124493 Rostkowski, 2013, Stoichiometry and kinetics of the PHB-producing Type II methanotrophs Methylosinus trichosporium OB3b and Methylocystis parvus OBBP, Bioresour. Technol., 132, 71, 10.1016/j.biortech.2012.12.129 Saéz, 1993, Biodegradation kinetics of a mixture containing a primary substrate (phenol) and an inhibitory co-metabolite (4-chlorophenol), Biodegradation, 4, 3, 10.1007/BF00701451 Shukla, 2014, Current trends in trichloroethylene biodegradation: a review, Crit. Rev. Biotechnol., 34, 101, 10.3109/07388551.2012.727080 Zalesak, 2017, Cometabolic degradation of dichloroethenes by Comamonas testosteroni RF2, Chemosphere, 186, 919, 10.1016/j.chemosphere.2017.07.156 Zhang, 2017, Coupled effects of methane monooxygenase and nitrogen source on growth and poly-beta-hydroxybutyrate (PHB) production of Methylosinus trichosporium OB3b, J. Environ. Sci. (China), 52, 49, 10.1016/j.jes.2016.03.001 Zhang, 2016, Alternated phenol and trichloroethylene biodegradation in an aerobic granular sludge reactor, Biochem. Eng. J., 106, 1, 10.1016/j.bej.2015.10.026