Kinetics of High-Temperature Nitridation of Zr–Nb Solid Solutions

Inorganic Materials - Tập 59 - Trang 242-250 - 2023
I. A. Kovalev1, G. P. Kochanov1, V. Yu. Zufman1, L. O. L’vov1, S. V. Shevtsov1, K. Yu. Demin1, A. I. Sitnikov1, A. V. Shokod’ko1, S. S. Strel’nikova1, A. S. Chernyavskii1, K. A. Solntsev1
1Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

We have demonstrated general kinetic aspects of the formation of nitrides of Zr–Nb alloys (containing 0.1, 2.5, and 5 wt % Nb) at a temperature of 1900°C. The nitridation process has been shown to have a two-stage character, with both stages having an exponential rate law. The reaction rate in the second stage is considerably lower than in the first stage. We have determined the composition of the resulting heterostructures of the form Zr1–хNbхN–ZrN1–n /β-solid solution of zirconium in niobium (Zr1–хNbхN) and identified the nitridation sequence of the components of the starting alloy. The first stage of the process is the formation of an α-solid solution of nitrogen in Zr and its conversion into a nonstoichiometric nitride. The kinetic curve of the second stage describes nitridation of the β-Nb phase resulting from the decomposition of the Zr〈Nb〉 solid solution. The duration of the second stage of the process has been shown to be determined by the amount of niobium in the starting solid solution. Experimental evidence is presented that single-stage nitridation of Zr–M alloys can be used for producing single-phase ceramics containing active additions and having the shape of the starting metallic workpiece.

Tài liệu tham khảo

Kononov, A.G., Kukareko, V.A., Belyi, A.V., and Sharkeev, Yu.P., Ion-modified submicrocrystalline titanium and zirconium alloys for medical and engineering applications, Mekh. Mashin, Mekh. Mater., 2013, vol. 1, no. 22, pp. 47–53. Zhaoa, Y., Lib, H., and Huanga, Yu., The structure, mechanical, electronic and thermodynamic properties of bcc Zr–Nb alloy: a first principles study, J. Alloys Compd., 2021, vol. 862, p. 158029. https://doi.org/10.1016/j.jallcom.2020.158029 Daniel, C.S., Honniball, P.D., Bradley, L., Preuss, M., and Fonseca, J.Q., Texture development during rolling of α + β dual-phase ZrNb alloys, Zirconium in the Nuclear Industry: 18th Int. Symp. STP 1597, 2018. https://doi.org/10.1520/STP159720160070 Sokolenko, V.I., Mats, A.V., and Mats, V.A., Mechanical characteristics of nanostructured zirconium and zirconium–niobium alloys, Fiz. Tekh. Vys. Davlenii, 2013, vol. 23, no. 2, pp. 96–102. Liua, Ya., Yanga, Yu., Donga, D., Wanga, J., and Zhoua, L., Improving wear resistance of Zr–2.5Nb alloy by formation of microtextured nitride layer produced via laser surface texturing/plasma nitriding technology, Surf. Interfaces, 2020, vol. 20, p. 100638. https://doi.org/10.1016/j.surfin.2020.100638 Chernyavskii, A.S., Synthesis of ceramics based on titanium, zirconium, and hafnium nitrides, Inorg. Mater., 2019, vol. 55, no. 13, pp. 1303–1327. https://doi.org/10.1134/S0020168519130016 Graziani, T. and Bellosi, A., Densification and characteristics of TiN ceramics, J. Mater. Sci. Lett., 1995, vol. 14, no. 15, pp. 1078–1081. https://doi.org/10.1007/BF00258170 Bashlykov, S.S., Demenyuk, V.D., Grigor’ev, E.G., Olevskii, E.A., and Yurlova, M.S., Electropulse consolidation of UN powder, Inorg. Mater.: Appl. Res., 2014, vol. 5, no. 3, pp. 278–283. https://doi.org/10.1007/BF00258170 Demenyuk, V.D., Yurlova M.S., Lebedeva, L.Yu., Grigor’ev, E.G., and Olevskii, E.A., Electric discharge consolidation methods: an alternative to spark plasma sintering (literature survey), Yad. Fiz. Inzh., 2013, vol. 4, no. 3, pp. 195–239. https://doi.org/10.1134/S2079562913030019 Smirnova, D.E., Starikov, S.V., and Gordeev, I.S., Phase transitions and deformation mechanisms in zirconium and zirconium–niobium alloys: atomistic simulations, Sbornik materialov VII mezhdunarodnoi konferentsii “Deformatsiya i razrushenie materialov i nanomaterialov” (Proc. VII Int. Conf. Deformation and Fracture of Materials and Nanomaterials), Moscow: Inst. Metallurgii Ross. Akad. Nauk, 2017. Belyi, A.V., Kononov, A.G., and Kukareko, V.A., Effect of ion-beam nitridation on structural and phase states and frictional characteristics of surface layers of Zr–2.5% Nb alloy, Tr. BGTU, 2016, no. 2, pp. 87–99. Pshenichnaya, O.V., Kuzenkova, M.A., and Kislyi, P.S., Effect of powder particle size on the sintering of zirconium nitride, Powder Metall. Met. Ceram., 1979, vol. 18, pp. 882–887. Petrykina, Y.R. and Shvedova, K.L., Hot pressing of transition metal nitrides and their properties, Poroshk. Metall., 1972, vol. 11, no. 4, pp. 276–279. Solntsev, K.A., Shustorovich, E.M., and Buslaev, Y.A., Oxidative constructing of thin-walled ceramics (OCTWC), Dokl. Chem., 2001, vol. 378, nos. 4–6, pp. 143–149. Solntsev, K.A., Shustorovich, E.M., Chernyavskii, A.S., and Dudenkov, I.V., Oxidative constructing of thin-walled ceramics (OCTC) at temperatures above the melting point of a metal: fabrication of oxide fibers from filaments of aluminum and its alloy, Dokl. Chem., 2002, vol. 385, nos. 1–3. pp. 193–198. Kuznetsov, K.B., Shashkeev, K.A., Shevtsov, S.V., Ogarkov, A.I., Tretyakov, N.N., Saprina, M.P., Kostyuchenko, A.V., Chernyavskii, A.S., Ievlev, V.M., and Solntsev, K.A., Structure and hardness of ceramics produced through high-temperature nitridation of zirconium foil, Inorg. Mater., 2015, vol. 51, no. 8, pp. 820–827. https://doi.org/10.1134/S0020168515080129 Shevtsov, S.V., Ogarkov, A.I., Kovalev, I.A., Kuznetsov, K.B., Prosvirnin, D.V., Ashmarin, A.A., Chernyavskii, A.S., and Solntsev, K.A., Structural and phase transformations and hardness of ceramics produced by high-temperature zirconium nitriding, Russ. J. Inorg. Chem., 2016, vol. 61, no. 12, pp. 1573–1577. https://doi.org/10.1134/S0036023616120160 Kovalev, I.A., Kannykin, S.V., Konovalov, A.A., Kochanov, G.P., Ogarkov, A.I., Tarasov, B.A., Shornikov, D.P., Strel’nikova, S.S., Chernyavskii, A.S., and Solntsev, K.A., Phase transformations accompanying high-temperature nitridation of Zr–Nb alloys, Inorg. Mater., 2022, vol. 58, no. 4, pp. 364–370. https://doi.org/10.1134/S0020168522040070 Ushakov, S.V., Navrotsky, A., Hong, Q-J., and Walle, A., Carbides and nitrides of zirconium and hafnium, Materials, 2019, vol. 12, no. 17, p. 2728. https://doi.org/10.3390/ma12172728 Kovalev, I.A., Kochanov, G.P., L’vov, L.O., Shevtsov, S.V., Kannikin, S.V., Sitnikov, A.N., Strel’nikova, S.S., Chernyavskii, A.S., and Solntsev, K.A., Compositional evolution of zirconium and niobium in the process of high-temperature nitridation of Zr–Nb alloys, Mendeleev Commun., 2022, vol. 32, no. 4, pp. 498–500. https://doi.org/10.1016/j.mencom.2022.07.022 Powder Diffraction File, Alphabetical Index, Inorganic Compounds, Pennsylvania: JCPDS, 1997. Butyagin, P.Yu., Khimicheskaya fizika tverdogo tela (Chemical Physics of Solids), Moscow: Mosk. Gos. Univ., 2006, p. 185. Kuznetsov, K.B., Kovalev, I.A., Zufman, V.Yu., Ogarkov, A.I., Shevtsov, S.V., Ashmarin, A.A., Cher-nyavskii, A.S., and Solntsev, K.A., Kinetics of zirconium saturation with nitrogen during high-temperature nitridation, Inorg. Mater., 2016, vol. 52, no. 6, pp. 558–560. https://doi.org/10.1134/S0020168516060078 Abriata, J.P. and Bolcich, J.C., The Nb–Zr (niobium–zirconium) system, J. Phase Equilib., 1982, no. 3 (1), pp. 34–44. Samsonov, G.V. and Vinitskii, I.M., Tugoplavkie soedineniya: Spravochnik (Refractory Compounds: A Handbook), Moscow: Metallurgiya, 1976, 2nd ed.