Kinetics and mechanism of 1-phenylethanol oxidation by the system hydrogen peroxide-manganese(IV) binuclear complex-oxalic acid

Pleiades Publishing Ltd - Tập 84 - Trang 1502-1505 - 2010
Yu. N. Kozlov1, L. S. Shul’pina2, T. V. Strelkova2, G. B. Shul’pin1
1Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow, Russia
2Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

Hydrogen peroxide was found to oxidize 1-phenylethanol to acetophenone in acetonitrile homogeneous solution efficiently at room temperature in the presence of a dimeric complex of manganese (IV) [LMn(O)3MnL](PF6)2(where L = 1,4,7-trimethyl-1,4,7-triazacyclononane) as the catalyst and oxalic acid as a co-catalyst. The number of catalytic cycles was 15 000 3 h after the onset of the reaction. The dependences of the initial rate of acetophenone accumulation on the initial concentrations of the reagents were studied. Based on an analysis of the kinetic data, we conclude that phenylethanol is oxidized by a manganyl particle containing an Mn = O fragment that interacts competitively with hydrogen peroxide.

Tài liệu tham khảo

A. E. Shilov and G. B. Shul’pin, Activation and Catalytic Reactions of Saturated Hydrocarbons in the Presence of Metal Complexes (Kluwer, Dordrecht, Boston, London, 2000). G. B. Shul’pin, J. Mol. Catal. A: Chem. 189, 39 (2002). G. B. Shul’pin, Comp. Rend. Chim. 6, 163 (2003). G. B. Shul’pin, Transition Metals for Organic Synthesis, Ed. by M. Beller and C. Bolm, Vol. 2 (Wiley-VCH, New York, Weinheim, 2004), pp. 215–242. S. Tanase and E. Bouwman, Adv. Inorg. Chem. 58, 29 (2006). K. F. Sibbons, K. Shastri, and M. Watkinson, J. Chem. Soc., Dalton Trans., p. 645 (2006). G. B. Shul’pin, Mini-Rev. Org. Chem. 6, 95 (2009). J. R. Lindsay-Smith and G. B. Shul’pin, Tetrahedron Lett. 39, 4909 (1998). G. B. Shul’pin, G. Suss-Fink, and J. R. Lindsay-Smith, Tetrahedron 55, 5345 (1999). G. B. Shul’pin, G. Suss-Fink, and L. S. Shul’pina, J. Mol. Catal. A: Chem. 170, 17 (2001). G. Suss-Fink, G. B. Shul’pin, and L. S. Shul’pina, US Patent No. 7.015.358 (March 21, 2006); Eur. Patent EP 1 38512 A0, Appl. WO 02/088063, art. 158 of the EPC. G. B. Shul’pin, G. V. Nizova, Y. N. Kozlov, and I. G. Pechenkina, New J. Chem. 26, 1238 (2002). G. V. Nizova, C. Bolm, S. Ceccarelli, et al., Adv. Synth. Catal. 344, 899 (2002). G. B. Shul’pin, G. V. Nizova, Y. N. Kozlov, et al., J. Organomet. Chem. 690, 4498 (2005). V. A. dos Santos, L. S. Shul’pina, D. Veghini, et al., React. Kinet. Catal. Lett. 88, 339 (2006). V. B. Romakh, B. Therrien, G. Suss-Fink, and G. B. Shul’pin, Inorg. Chem. 46, 1315 (2007). G. B. Shul’pin, M. G. Matthes, V. B. Romakh, et al., Tetrahedron 64, 2143 (2008). G. B. Shul’pin, Y. N. Kozlov, S. N. Kholuiskaya, and M. I. Plieva, J. Mol. Catal. A: Chem. 299, 77 (2009). J. Brinksma, M. T. Rispens, R. Hage, and B. L. Feringa, Inorg. Chim. Acta 337, 75 (2002). L. M. Dorfman and G. E. Adams, in Reactivity of the Hydroxyl Radical in Aqueous Solutions, NSRDS-NBS 46 (Washington, DC, 1973), p. 24. Farhataziz and A. B. Ross, Selected Specific Rates of Reactions of Transients from Water in Aqueous Solution. III. Hydroxyl Radical and Perhydroxyl Radical and Their Radical Ions, NSRDS-NBS 59 (Washington, DC, 1977).