Kinetic stability of hematite nanoparticles: the effect of particle sizes

Yiliang He1, Jiamin Wan1, Tetsu K. Tokunaga1
1Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adachi Y, Koga S, Kobayashi M, Inada M (2005) Study of colloidal stability of allophane dispersion by dynamic light scattering. Colloids Surf A 265:149–154

Amal R, Coury JR, Raper JA, Walsh WP, Waite TD (1990) Structure and kinetics of aggregating colloidal hematite. Colloids Surf 46:1–19

Amal R, Raper JA, Waite TD (1992) Effect of fulvic acid adsorption on the aggregation kinetics and structure of hematite particles. J Colloid Interface Sci 151:244–257

Banfield JF, Zhang H (2001) Nanoparticles in the environment. Rev Mineral Geochem 44:1–58

Behrens SH, Borkovec M, Schurtenberger P (1998) Aggregation in charge-stabilized colloidal suspensions revisited. Langmuir 14:1951–1954

Bickmore BR, Rosso KM, Nagy KL, Cygan RT, Tadanier CJ (2003) Ab initio determination of edge surface structures for dioctahedral 2:1 phyllosilicates: implications for acid-base reactivity. Clays Clay Miner 51:359–371

Burns JL, Yan Y-d, Jameson GJ, Biggs S (1997) A light scattering study of the fractal aggregation behavior of a model colloidal system. Langmuir 13:6413–6420

Chen KL, Mylon SE, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40:1516–1523

Fukushi K, Sato T (2005) Using a surface complexation model to predict the nature and stability of nanoparticles. Environ Sci Technol 39:1250–1256

Hanus LH, Hartzler RU, Wagner NJ (2001) Electrolyte-induced aggregation of acrylic latex. 1. Dilute particle concentrations. Langmuir 17:3136–3147

Heidmann I, Christl I, Kretzschmar R (2005) Aggregation kinetics of kaolinite-fulvic acid colloids as affected by the sorption of Cu and Pb. Environ Sci Technol 39:807–813

Hiemenz PC, Rajagopalan R (eds) (1997) Principles of colloid and surface chemistry, 3rd edn, revised and expanded. Marcel Dekker, New York

Hochella MF, Moore JN, Putnis CV, Putnis A, Kasama T, Eberl DD (2005) Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: implications for metal transport and bioavailability. Geochim Cosmochim Acta 69:1651–1663

Holthoff H, Egelhaaf SU, Borkovec M, Schurtenberger P, Sticher H (1996) Coagulation rate measurements of colloidal particles by simultaneous static and dynamic light scattering. Langmuir 12:5541–5549

Kimball BA, Callender E, Axtmann EV (1995) Effects of colloids on metal transport in a river receiving acid mine drainage, upper Arkansas River, Colorado, USA. Appl Geochem 10:285–306

Kosmulski M (2002) pH dependent surface charging and points of zero charge. J Colloid Interface Sci 253:77–87

Kosmulski M (2006) pH dependent surface charging and points of zero charge iii. update. J Colloid Interface Sci 298:730–741

Kretzschmar R, Holthoff H, Sticher H (1998) Influence of pH and humic acid on coagulation kinetics of kaolinite: a dynamic light scattering study. J Colloid Interface Sci 202:95–103

Madden AS, Hochella MF Jr (2005) A test of geochemical reactivity as a function of mineral size: manganese oxidation promoted by hematite nanoparticles. Geochim Cosmochim Acta 69:389–398

Mulvaney P, Cooper R, Grieser F, Meisel D (1988) Charge trapping in the reductive dissolution of colloidal suspensions of iron(iii) oxides. Langmuir 4:1206–1211

Mylon SE, Chen KL, Elimelech M (2004) Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries. Langmuir 20:9000–9006

Plaza RC, Quirantes A, Delgado AV (2002) Stability of dispersions of colloidal hematite/yttrium oxide core-shell particles. J Colloid Interface Sci 252:102–108

Ponder SM, Darab JG, Bucher D, Caulder D, Mallouk TE (2001) Surface chemistry and electrochemistry of supported zerovalent iron nanoparticles in the remediation of aqueous metal contaminants. Chem Mater 13:479–486

Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(vi) and Pb(ii) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34:2564–2569

Schrick B, Blough J, Jones A, Mallouk TE (2002) Hydrodechlorination of trichoroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147

Schudel M, Behrens SH, Holthoff H, Kretzschmar R, Borkovec M (1997) Absolute aggregation rate constants of hematite particles in aqueous suspensions: a comparison of two different surface morphologies. J Colloid Interface Sci 196:241–253

Schwertmann U, Cornell RM (1991) Iron oxides in the laboratory: preparation and characterization. Wiley-VCH, New York

Tungittiplakorn WLW, Cohen C, Kim JY (2004) Engineered polymeric nanoparticles for soil remediation. Environ Sci Technol 38:1605–1610

Wang C, Zhang W (1997) Nanoscale metal particles for dechlorination of PCE and PCB. Environ Sci Technol 31:2154–2156

Waychunas GA (2001) Structure, aggregation and characterization of nanoparticles. Rev Mineral Geochem 44:105–166

Waychunas GA, Kim CS, Banfield JF (2005) Nanoparticulate iron oxide minerals in soils and sediments: unique properties and contaminant scavenging mechanisms. J Nanoparticle Res 7:409–433