Kinetic modeling of antimony(III) oxidation and sorption in soils

Journal of Hazardous Materials - Tập 316 - Trang 102-109 - 2016
Yongbing Cai1,2, Yuting Mi3, Hua Zhang1
1Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, China
2University of Chinese Academy of Sciences, Beijing, China
3School of Environment and Materials Engineering, Yantai University, Yantai, Shandong, China

Tài liệu tham khảo

United States Environmental Protection Agency, Toxics release inventory, Doc. 745-R-00–007Washington, DC, USA, USEPA (1979). Filella, 2002, Antimony in the environment: a review focused on natural waters I. Occurrence, Earth-Sci. Rev., 57, 125, 10.1016/S0012-8252(01)00070-8 Gebel, 1997, Arsenic and antimony: comparative approach on mechanistic toxicology, Chem. Biol. Interact., 107, 131, 10.1016/S0009-2797(97)00087-2 Hammel, 2000, Mobility of antimony in soil and its availability to plants, Chemosphere, 41, 1791, 10.1016/S0045-6535(00)00037-0 Beyersmann, 2008, Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms, Arch. Toxicol., 82, 493, 10.1007/s00204-008-0313-y Hockmann, 2012, Leaching of antimony from contaminated soils, 119 Filella, 2002, Antimony in the environment: a review focused on natural waters II. Relevant solution chemistry, Earth-Sci. Rev., 59, 265, 10.1016/S0012-8252(02)00089-2 Carlin Jr., Antimony, U.S. geological survey mineral commodity summaries (2000). He, 2012, Antimony pollution in China, Sci. Total Environ., 421–422, 41, 10.1016/j.scitotenv.2011.06.009 Wilson, 2010, The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: a critical review, Environ. Pollut., 158, 1169, 10.1016/j.envpol.2009.10.045 Zhang, 2005 Leuz, 2006, Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization, Env. Sci. Technol., 40, 7277, 10.1021/es061284b Scheinost, 2006, Quantitative antimony speciation in shooting range soils by EXAFS spectroscopy, Geochim. Cosmochim. Acta, 70, 3299, 10.1016/j.gca.2006.03.020 Shan, 2014, Efficient removal of trace antimony(III) through adsorption by hematite modified magnetic nanoparticles, J. Hazard. Mater., 268, 229, 10.1016/j.jhazmat.2014.01.020 Ilgen, 2012, Sb(III) and Sb(V) sorption onto Al-Rich phases: hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced nontronite NAu-1, Environ. Sci. Technol., 46, 843, 10.1021/es203027v Xi, 2011, Adsorption of antimony(III) and antimony(V) on bentonite: kinetics, thermodynamics and anion competition, Microchem. J., 97, 85, 10.1016/j.microc.2010.05.017 Tserenpil, 2011, Study of antimony(III) binding to soil humic acid from an antimony smelting site, Microchem. J., 98, 15, 10.1016/j.microc.2010.10.003 Quentel, 2004, Kinetic studies on Sb(III) oxidation by hydrogen peroxide in aqueous solution, Environ. Sci. Technol., 38, 2843, 10.1021/es035019r Leuz, 2005, Oxidation of Sb(III) to Sb(V) by O2 and H2O2 in aqueous solutions, Geochim. Cosmochim. Acta, 69, 1165, 10.1016/j.gca.2004.08.019 Quentel, 2006, Sb(III) oxidation by iodate in seawater: a cautionary tale, Sci. Total Environ., 355, 259, 10.1016/j.scitotenv.2005.01.048 Fan, 2014, Photo-induced oxidation of Sb(III) on goethite, Chemosphere, 95, 295, 10.1016/j.chemosphere.2013.08.094 Xi, 2013, Adsorption of antimony(III) on goethite in the presence of competitive anions, J. Geochem. Explor., 132, 201, 10.1016/j.gexplo.2013.07.004 Wang, 2012, Antimony(III) oxidation and antimony(V) adsorption reactions on synthetic manganite, Chem. Erde, 724, 41, 10.1016/j.chemer.2012.02.002 Belzile, 2001, Oxidation of antimony(III) by amorphous iron and manganese oxyhydroxides, Chem. Geol., 174, 379, 10.1016/S0009-2541(00)00287-4 Buschmann, 2005, Photoinduced oxidation of antimony(III) in the presence of humic acid, Environ. Sci. Technol., 39, 5335, 10.1021/es050269o Mitsunobu, 2006, Comparison of antimony behavior with that of arsenic under various soil redox conditions, Environ. Sci. Technol., 40, 7270, 10.1021/es060694x Mitsunobu, 2010, μ-XANES evidence for the reduction of Sb(V) to Sb(III) in soil from Sb mine tailing, Environ. Sci. Technol., 44, 1281, 10.1021/es902942z Zhang, 2014, Kinetic modeling of antimony(V) adsorption–desorption and transport in soils, Chemosphere, 111, 434, 10.1016/j.chemosphere.2014.04.054 Zhang, 2005, Kinetics of arsenate adsorption–desorption in soils, Environ. Sci. Technol., 39, 6101, 10.1021/es050334u Zhang, 2006, Modeling the transport and retention of arsenic (V) in soils, Soil Sci. Soc. Am. J., 70, 1677, 10.2136/sssaj2006.0035 Zhang, 2011, Second-order modeling of arsenite transport in soils, J. Contam. Hydrol., 126, 121, 10.1016/j.jconhyd.2011.08.002 D.L. Parkhurst, C.A.J. Appelo, Description of input and examples for PHREEQC version 3-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Techniques and Methods, (2013) book 6, chap. A43, 497 p., available only at http://pubs.usgs.gov/tm/06/a43/. Ho, 2002, Equilibrium isotherm studies for the sorption of divalent metal ions on to peat: copper, nickel and lead single component systems, Water Air Soil Pollut., 141, 1, 10.1023/A:1021304828010 Pilarski, 1995, Sorption of antimony species by humic-acid, Water Air Soil Pollut., 84, 51, 10.1007/BF00479588 Vithanage, 2013, Surface complexation modeling and spectroscopic evidence of antimony adsorption on iron-oxide-rich red earth soils, J. Colloid Interface Sci., 406, 217, 10.1016/j.jcis.2013.05.053 Xi, 2010, Adsorption of antimony(V) on kaolinite as a function of pH, ionic strength and humic acid, Environ. Earth Sci., 60, 715, 10.1007/s12665-009-0209-z Rakshit, 2015, Surface complexation of antimony on kaolinite, Chemosphere, 119, 349, 10.1016/j.chemosphere.2014.06.070 Tighe, 2007, The importance of non-crystalline hydroxide phases in sequential extractions to fractionate antimony in acid soils, Commun. Soil Sci. Plant, 38, 1487, 10.1080/00103620701378441 Pierce, 1982, Adsorption of arsenite and arsenate on amorphous iron hydroxide, Water Res., 16, 1247, 10.1016/0043-1354(82)90143-9 Ambe, 1987, Adsorption kinetics of antimony(V) ions onto alpha-Fe2O3 surfaces from an aqueous solution, Langmuir, 3, 489, 10.1021/la00076a009 Zhu, 2014, Ionic strength reduction and flow interruption enhanced colloid-facilitated Hg transport in contaminated soils, J. Hazard. Mater., 264, 286, 10.1016/j.jhazmat.2013.11.009 Yin, 2010, Colloid-facilitated Pb transport in two shooting-range soils in Florida, J. Hazard. Mater., 177, 620, 10.1016/j.jhazmat.2009.12.077 Tighe, 2005, Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid, J. Environ. Monit., 7, 1177, 10.1039/b508302h Ilgen, 2014, Oxidation and mobilization of metallic antimony in aqueous systems with simulated groundwater, Geochim. Cosmochim. Acta, 132, 16, 10.1016/j.gca.2014.01.019 Filella, 2007, Antimony in the environment: a review focused on natural waters III. Microbiota relevant interactions, Earth-Sci. Rev., 80, 195, 10.1016/j.earscirev.2006.09.003 Calle-Guntiñas, 1992, Stability study of total antimony, Sb(III) and Sb(V) at the trace level, Fresen. J. Anal. Chem., 344, 27, 10.1007/BF00324836 Amirbahman, 2006, Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials, Geochim. Cosmochim. Acta, 70, 533, 10.1016/j.gca.2005.10.036