Kinetic formulation of the isentropic gas dynamics andp-systems

Pierre-Louis Lions1, Benoı̂t Perthame2, Eitan Tadmor3
1Ceremade, Université Paris IX-Dauphine, Place de Lattre de Tassigny, 75775 Paris Cedex 16, France
2Laboratoire d'Analyse Numérique, Université P. et M. Curie T55/65, étage 5, 4 Place Jussieu, F-75252, Paris Cédex 05, France
3School of Mathematical Sciences, Tel Aviv University, Tel Aviv, Israel

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, G.Q.: The theory of compensated compactness and the System of Isentropic Gas Dynamics. Preprint MCS-P154-0590, University of Chicago, (1990)

Dafermos, C.M.: Estimates for conservation laws with little viscosity. SIAM J. Math. Anal.18, n. 2, 409–421 (1987)

DiPerna, R.J.: Convergence of Approximate Solutions to Conservation Laws. Arch. Rat. Mec. and Anal.82(1), 27–70 (1983)

DiPerna, R.J.: Convergence of the Viscosity Method of Isentropic Gas Dynamics. Commun. Math. Phys.91, 1–30 (1983)

DiPerna, R.J., Lions, P.L., Meyer, Y.:L p Regularity of Velocity Averages. Ann. I.H.P. Anal. Non Lin.8(3–4), 271–287 (1991)

Golse, F., Lions, P.L., Perthame, B., Sentis, R.: Regularity of the Moments of the Solution of a Transport Equation. J. Funct. Anal.76, 110–125 (1988)

Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock waves. CBMS-NSF regional conferences series in applied mathematics, 11 (1973)

Lions, P.L., Perthame, B.: Lemmes de moments, de moyenne et de dispersion. C.R. Acad. Sc. Paris, t.314, série I, 801–806 (1992)

Lions, P.L., Perthame, B., Tadmor, E.: Formulation cinétique des lois de conservation scalaires. C.R. Acad. Sci. Paris, t.312, série I, 97–102 (1991)

Lions, P.L., Perthame, B., Tadmor, E.: Kinetic Formulation of Scalar Conservation Laws. J.A.M.S.7, 169–191 (1994)

Murat, F.: Compacité par compensation. Ann. Scuola Norm. Sup. Pisa5, 489–507 (1978)

Perthame, B.: Higher Moments Lemma: Applications to Vlasov-Poisson and Fokker-Planck equations Math. Meth. Appl. Sc.13, 441–452 (1990)

Serre, D.: Domaines invariants pour les systèmes hyperboliques de lois de conservation.69, n. 1, 46–62 (1987)

Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York: Springer 1982

Tartar, L.: Compensated Compactness and Applications to Partial Differential Equations. In: Research Notes in Mathematics, Nonlinear analysis and mechanics, Heriot-Watt Symposium, Vol. 4 Knops, R.J. (ed.) London: Pitman Press, 1979

James, F., Peng, Y-J., Perthame, B.: Kinetic formulation for the chromatography and some other hyperbolic systems (To appear in J. Math. Pures et Appl.)