Kinetic characterization and modeling of a microalgae consortium isolated from landfill leachate under a high CO2 concentration in a bubble column photobioreactor

Electronic Journal of Biotechnology - Tập 44 - Trang 47-57 - 2020
Luis Fernando Saldarriaga1,2, Fernando Almenglo1, Martín Ramírez1, Domingo Cantero1
1Departamento de Ingeniría Química y Tecnología de Alimentos, Instituto de Investigación Vitivinícola y Agroalimentaria, Universidad de Cadiz, Puerto Real 11510, Spain
2Departamento de Química, Universidad del Atlántico, Km 7, Vía Puerto Colombia, Colombia

Tài liệu tham khảo

Farrelly, 2013, Carbon sequestration and the role of biological carbon mitigation: A review, Renew Sustain Energy Rev, 21, 712, 10.1016/j.rser.2012.12.038 Ramírez, 2015, Biogas: Sources, purification and uses. Biogas, 11, 296 Hsueh, 2009, Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1 and Nannochloropsis oculta, J Photochem Photobiol B, 95, 33, 10.1016/j.jphotobiol.2008.11.010 Shene, 2016, Effect of CO2 in the aeration gas on cultivation of the microalga Nannochloropsis oculata: Experimental study and mathematical modeling of CO2 assimilation, Algal Res, 13, 16, 10.1016/j.algal.2015.11.005 Pegallapati, 2012, Modeling algal growth in bubble columns under sparging with CO2-enriched air, Bioresour Technol, 124, 137, 10.1016/j.biortech.2012.08.026 Muharam, 2017, Modelling and simulation of a bubble column photobioreactor for the cultivation of microalgae Nannochloropsis salina, Chem Eng Trans, 56, 1555 Pfaffinger, 2016, Model-based optimization of microalgae areal productivity in flat-plate gas-lift photobioreactors, Algal Res, 20, 153, 10.1016/j.algal.2016.10.002 Kasiri, 2015, Kinetic modeling and optimization of carbon dioxide fixation using microalgae cultivated in oil-sands process water, Chem Eng Sci, 137, 697, 10.1016/j.ces.2015.07.004 Lee, 2016, Integrated co-limitation kinetic model for microalgae growth in anaerobically digested municipal sludge centrate, Algal Res, 18, 15, 10.1016/j.algal.2016.05.019 Kilham, 1998, COMBO: A defined freshwater culture medium for algae and zooplankton, Hydrobiologia, 377, 147, 10.1023/A:1003231628456 Andersen, 2005, Traditional microalgae isolation techniques, Ch6, 83 Thawechai, 2016, Mitigation of carbon dioxide by oleaginous microalgae for lipids and pigments production: Effect of light illumination and carbon dioxide feeding strategies, Bioresour Technol, 219, 139, 10.1016/j.biortech.2016.07.109 Zhao, 2014, Process effect of microalgal-carbon dioxide fixation and biomass production: A review, Renew Sustain Energy Rev, 31, 121, 10.1016/j.rser.2013.11.054 Safi, 2014, Aqueous extraction of proteins from microalgae: Effect of different cell disruption methods, Algal Res, 3, 61, 10.1016/j.algal.2013.12.004 Clesceri, 1999, 1120 McClure, 2015, Mixing in bubble column reactors: Experimental study and CFD modeling, Chem Eng J, 264, 291, 10.1016/j.cej.2014.11.090 Flynn, 1997, Modelling the interactions between ammonium and nitrate uptake in marine phytoplankton, Philos Trans R Soc London Ser B, 352, 1625, 10.1098/rstb.1997.0145 Sanz-Luque, 2015, Understanding nitrate assimilation and its regulation in microalgae, Front Plant Sci, 6 Franco-Morgado, 2017, A study of photosynthetic biogas upgrading based on a high rate algal pond under alkaline conditions: Influence of the illumination regime, Sci Total Environ, 592, 419, 10.1016/j.scitotenv.2017.03.077 Montgomery, 1997, 684 Arbib, 2013, Photobiotreatment: influence of nitrogen and phosphorus ratio in wastewater on growth kinetics of Scenedesmus obliquus, Int J Phytoremediation, 15, 774, 10.1080/15226514.2012.735291 Barbosa, 2004, Optimization of biomass, vitamins, and carotenoid yield on light energy in a flat-panel reactor using the A-stat technique, Biotechnol Bioeng, 89, 233, 10.1002/bit.20346 Babcock, 2002, Hydrodynamics and mass transfer in a tubular airlift photobioreactor, J Appl Phycol, 14, 169, 10.1023/A:1019924226457 Sander, 2015, Compilation of Henry’s law constants (version 4.0) for water as solvent, Atmos Chem Phys, 15, 4399, 10.5194/acp-15-4399-2015 Callejo-López, 2019, Main variables affecting a chemical-enzymatic method to obtain protein and amino acids from resistant microalgae, J Chem N Y, 2019 Andersen, 1998, Phylogeny of the Eustigmatophyceae based upon 18S rDNA, with emphasis on Nannochloropsis, Protist, 149, 61, 10.1016/S1434-4610(98)70010-0 Baroni, 2019, The effect of nitrogen depletion on the cell size, shape, density and gravitational settling of Nannochloropsis salina, Chlorella sp. (marine) and Haematococcus pluvialis, Algal Res, 39, 10.1016/j.algal.2019.101454 Kandilian, 2013, Radiation and optical properties of Nannochloropsis oculata grown under different irradiances and spectra, Bioresour Technol, 137, 63, 10.1016/j.biortech.2013.03.058 Ma, 2014, Evaluation of the potential of 9 Nannochloropsis strains for biodiesel production, Bioresour Technol, 167, 503, 10.1016/j.biortech.2014.06.047 Lizzul, 2018, Characterization of Chlorella sorokiniana, UTEX 1230, Biology, 7, 25, 10.3390/biology7020025 Xia, 2013, Effects of simulated flue gases on growth and lipid production of Chlorella sorokiniana CS-01, J Cent South Univ, 20, 730, 10.1007/s11771-013-1541-8 Kumar, 2014, Carbon dioxide sequestration from industrial flue gas by Chlorella sorokiniana, Bioresour Technol, 152, 225, 10.1016/j.biortech.2013.10.098 Razzak, 2015, Effects of CO2 concentration and pH on mixotrophic growth of Nannochloropsis oculata, Appl Biochem Biotechnol, 176, 1290, 10.1007/s12010-015-1646-7 Chiu, 2009, Lipid accumulation and CO2 utilization of Nannochloropsis oculata in response to CO2 aeration, Bioresour Technol, 100, 833, 10.1016/j.biortech.2008.06.061 Scherholz, 2013, Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media, BMC Biotechnol, 13, 39, 10.1186/1472-6750-13-39 Mennaa, 2015, Urban wastewater treatment by seven species of microalgae and an algal bloom: Biomass production, N and P removal kinetics and harvestability, Water Res, 83, 42, 10.1016/j.watres.2015.06.007 Fré, 2016, Kinetic modeling of Dunaliella tertiolecta growth under different nitrogen concentrations, Chem Eng Technol, 39, 1716, 10.1002/ceat.201500585 Yang, 2011, Modeling and evaluation of CO2 supply and utilization in algal ponds, Ind Eng Chem Res, 50, 11181, 10.1021/ie200723w Decostere, 2016, Validation of a microalgal growth model accounting with inorganic carbon and nutrient kinetics for wastewater treatment, Chem Eng J, 285, 189, 10.1016/j.cej.2015.09.111 Surendhiran, 2015, Kinetic modeling of microalgal growth and lipid synthesis for biodiesel production, 3 Biotech, 5, 663, 10.1007/s13205-014-0264-3 Bernard, 2012, Validation of a simple model accounting for light and temperature effect on microalgal growth, Bioresour Technol, 123, 520, 10.1016/j.biortech.2012.07.022 Ketheesan, 2013, Modeling microalgal growth in an airlift-driven raceway reactor, Bioresour Technol, 136, 689, 10.1016/j.biortech.2013.02.028 Packer, 2011, Growth and neutral lipid synthesis in green microalgae: A mathematical model, Bioresour Technol, 102, 111, 10.1016/j.biortech.2010.06.029 Kim, 2013, Removal of nitrogen and phosphorus from municipal wastewater effluent using Chlorella vulgaris and its growth kinetics, Desalin Water Treat, 51, 7800, 10.1080/19443994.2013.779938 Banerjee, 2017, Dynamic process model and economic analysis of microalgae cultivation in open raceway ponds, Algal Res, 26, 330, 10.1016/j.algal.2017.08.011 Figueroa-Torres, 2017, Kinetic modelling of starch and lipid formation during mixotrophic, nutrient-limited microalgal growth, Bioresour Technol, 241, 868, 10.1016/j.biortech.2017.05.177 Bekirogullari, 2017, Production of lipid-based fuels and chemicals from microalgae: An integrated experimental and model-based optimization study, Algal Res, 23, 78, 10.1016/j.algal.2016.12.015 Darvehei, 2018, Model development for the growth of microalgae: A review, Renew Sustain Energy Rev, 97, 233, 10.1016/j.rser.2018.08.027 la Siegler, 2012, Optimization of microalgal productivity using an adaptive, non-linear model based strategy, Bioresour Technol, 104, 537, 10.1016/j.biortech.2011.10.029