Kinetic analysis and pyrolysis behavior of low-value waste lignocellulosic biomass for its bioenergy potential using thermogravimetric analyzer

Materials Science for Energy Technologies - Tập 4 - Trang 136-147 - 2021
Ranjeet Kumar Mishra1, Kaustubha Mohanty1
1Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India

Tài liệu tham khảo

Sharma, 2020, Sustainable environmental management and related biofuel technologies, J. Environ. Manage., 273, 111096, 10.1016/j.jenvman.2020.111096 Sharma, 2020, Waste-to-energy nexus: a sustainable development, Environ. Pollut., 115501 Chen, 2015, Study on pyrolysis behaviors of non-woody lignins with TG-FTIR and Py-GC/MS, J. Anal. Appl. Pyrol., 113, 499, 10.1016/j.jaap.2015.03.018 Srivastava, 2020, Biofuels, biodiesel and biohydrogen production using bioprocesses. A review, Environ. Chem. Lett., 18, 1049, 10.1007/s10311-020-00999-7 Office, 2016 Mishra, 2018, Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis, Bioresour. Technol., 251, 63, 10.1016/j.biortech.2017.12.029 Mohan, 2006, Pyrolysis of wood/biomass for bio-oil: a critical review, Energy Fuels, 20, 848, 10.1021/ef0502397 Srivastava, 2020, Sustainable energy from waste organic matters via efficient microbial processes, Sci. Total Environ., 722, 137927, 10.1016/j.scitotenv.2020.137927 Mishra, 2019, Pyrolysis of three waste biomass: Effect of biomass bed thickness and distance between successive beds on pyrolytic products yield and properties, Renewable Energy, 141, 549, 10.1016/j.renene.2019.04.044 Srivastava, 2021, Biomass utilization and production of biofuels from carbon neutral materials, Environ. Pollut., 116731 Ceylan, 2014, Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis, Bioresour. Technol., 171, 193, 10.1016/j.biortech.2014.08.064 Damartzis, 2011, Thermal degradation studies and kinetic modeling of cardoon (Cynara cardunculus) pyrolysis using thermogravimetric analysis (TGA), Bioresour. Technol., 102, 6230, 10.1016/j.biortech.2011.02.060 Mishra, 2019, Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser, Bioresour. Technol., 289, 121608, 10.1016/j.biortech.2019.121608 Heydari, 2015, Kinetic study and thermal decomposition behavior of lignite coal, Int. J. Chem. Eng., 2015, 10.1155/2015/481739 Saddawi, 2009, Kinetics of the thermal decomposition of biomass, Energy Fuels, 24, 1274, 10.1021/ef900933k Jain, 2016, Processing of TGA data: analysis of isoconversional and model fitting methods, Fuel, 165, 490, 10.1016/j.fuel.2015.10.042 Babu, 2003, Modeling, simulation and estimation of optimum parameters in pyrolysis of biomass, Energy Convers. Manage., 44, 2135, 10.1016/S0196-8904(02)00237-6 Sharma, 2016, Kinetic modeling and simulation: pyrolysis of Jatropha residue de-oiled cake, Renewable Energy, 86, 554, 10.1016/j.renene.2015.08.066 Anand, 2017, Non-catalytic and catalytic fast pyrolysis of Schizochytrium limacinum microalga, Fuel, 205, 1, 10.1016/j.fuel.2017.05.049 Vyazovkin, 2011, ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data, Thermochim. Acta, 520, 1, 10.1016/j.tca.2011.03.034 Mishra, 2020, Thermal behaviour, kinetics and fast pyrolysis of Cynodon dactylon grass using Py-GC/MS and Py-FTIR analyser, J. Anal. Appl. Pyrol., 150, 104887, 10.1016/j.jaap.2020.104887 Ahmad, 2017, Kinetic analyses and pyrolytic behavior of Para grass (Urochloa mutica) for its bioenergy potential, Bioresour. Technol., 224, 708, 10.1016/j.biortech.2016.10.090 Mishra, 2020, Pyrolysis kinetics behaviour and thermal pyrolysis of Samanea saman seeds towards the production of renewable fuel, J. Energy Inst., 93, 1148, 10.1016/j.joei.2019.10.008 Mishra, 2018, Characterization of non-edible lignocellulosic biomass in terms of their candidacy towards alternative renewable fuels, Biomass Convers. Biorefin., 8, 799, 10.1007/s13399-018-0332-8 Nturanabo, 2010 Li, 2013 Di Blasi, 1997, Intrinsic kinetics of isothermal xylan degradation in inert atmosphere, J. Anal. Appl. Pyrol., 40, 287, 10.1016/S0165-2370(97)00028-4 Di Blasi, 2008, Modeling chemical and physical processes of wood and biomass pyrolysis, Prog. Energy Combust. Sci., 34, 47, 10.1016/j.pecs.2006.12.001 Mishra, 2020, Kinetic analysis and pyrolysis behaviour of waste biomass towards its bioenergy potential, Bioresour. Technol., 311, 123480, 10.1016/j.biortech.2020.123480 Kim, 2013, Thermogravimetric characteristics and pyrolysis kinetics of Alga Sagarssum sp. biomass, Bioresour. Technol., 139, 242, 10.1016/j.biortech.2013.03.192 Maiti, 2007, Thermal characterization of mustard straw and stalk in nitrogen at different heating rates, Fuel, 86, 1513, 10.1016/j.fuel.2006.11.016 Doshi, 2014, Physicochemical and thermal characterization of nonedible oilseed residual waste as sustainable solid biofuel, Waste Manage., 34, 1836, 10.1016/j.wasman.2013.12.018 Mishra, 2020, Effect of low-cost catalysts on yield and properties of fuel from waste biomass for hydrocarbon-rich oil production, Mater. Sci. Energy Technol., 3, 526 Lopez-Velazquez, 2013, Pyrolysis of orange waste: a thermo-kinetic study, J. Anal. Appl. Pyrol., 99, 170, 10.1016/j.jaap.2012.09.016 Mishra, 2019, Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser, Bioresour. Technol., 121608 Mehrotra, 2010, Near infrared spectroscopic investigation of the thermal degradation of wood, Thermochim. Acta, 507, 60, 10.1016/j.tca.2010.05.001 Bryś, 2016, Wood biomass characterization by DSC or FT-IR spectroscopy, J. Therm. Anal. Calorim., 126, 27, 10.1007/s10973-016-5713-2 Tarrío-Saavedra, 2011, Functional nonparametric classification of wood species from thermal data, J. Therm. Anal. Calorim., 104, 87, 10.1007/s10973-010-1157-2 Hu, 2007, Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models, Fuel, 86, 2778, 10.1016/j.fuel.2007.02.031 Buratti, 2015, Thermogravimetric analysis of the behavior of sub-bituminous coal and cellulosic ethanol residue during co-combustion, Bioresour. Technol., 186, 154, 10.1016/j.biortech.2015.03.041 Mishra, 2015, Kinetic studies on the pyrolysis of pinewood, Bioresour. Technol., 182, 282, 10.1016/j.biortech.2015.01.087 Arenas, 2019, Pyrolysis kinetics of biomass wastes using isoconversional methods and the distributed activation energy model, Bioresour. Technol., 288, 121485, 10.1016/j.biortech.2019.121485 Özsin, 2019, TGA/MS/FT-IR study for kinetic evaluation and evolved gas analysis of a biomass/PVC co-pyrolysis process, Energy Convers. Manage., 182, 143, 10.1016/j.enconman.2018.12.060 Ceylan, 2014, Pyrolysis kinetics of hazelnut husk using thermogravimetric analysis, Bioresour. Technol., 156, 182, 10.1016/j.biortech.2014.01.040 Kumar, 2019, Thermal degradation kinetics of sugarcane leaves (Saccharum officinarum L) using thermo-gravimetric and differential scanning calorimetric studies, Bioresour. Technol., 279, 262, 10.1016/j.biortech.2019.01.137 Vlaev, 2007, Products and kinetics of non-isothermal decomposition of vanadium (IV) oxide compounds, J. Therm. Anal. Calorim., 88, 805, 10.1007/s10973-005-7149-y Xu, 2013, Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis, Bioresour. Technol., 146, 485, 10.1016/j.biortech.2013.07.086 Yuan, 2017, Cattle manure pyrolysis process: Kinetic and thermodynamic analysis with isoconversional methods, Renewable Energy, 107, 489, 10.1016/j.renene.2017.02.026 Maia, 2016, Kinetic parameters of red pepper waste as biomass to solid biofuel, Bioresour. Technol., 204, 157, 10.1016/j.biortech.2015.12.055 A. Sahoo, S. Kumar, K. Mohanty, Kinetic and thermodynamic analysis of Putranjiva roxburghii (putranjiva) and Cassia fistula (amaltas) non-edible oilseeds using thermogravimetric analyzer, Renewable Energy 165, 261–277. Uçar, 2009, The slow pyrolysis of pomegranate seeds: the effect of temperature on the product yields and bio-oil properties, J. Anal. Appl. Pyrol., 84, 151, 10.1016/j.jaap.2009.01.005