Kinetic Study of Indian Lignite by Model-Free Methods
Tóm tắt
Lignite is abundantly available in India and could be an important energy source. This low-grade coal could be utilized to produce clean fuel via thermochemical conversion processes such as pyrolysis and gasification. The thermogravimetric analysis technique can evaluate the solid-state kinetics of materials. This work focuses on evaluating the thermal decomposition characteristic of Indian lignite coal using the thermogravimetric analysis technique. Lignite was collected from Gujarat state, India, and nonisothermal decomposition was performed to obtain kinetic data. Nonisothermal decomposition of Indian lignite was achieved under oxidizing atmosphere using a thermogravimetric analyzer. Different heating rates (5, 7, 10, 15, 20, 30, 50 °C min−1) were selected, and the lignite sample’s mass/weight loss data were collected at selected heating rates. Experimental results showed that complex multistep reactions govern kinetics and decomposition occurs through various stages. Model-fitting and model-free methods are generally used to analyze the kinetic data. In the present study, a solid-state kinetic of lignite is analyzed using three model-free methods, namely Flynn–Wall–Ozawa, Kissinger–Akahira–Sunose and Tang, and comparison of obtained results is also presented. It was found that the activation energy depends upon the degree of conversion and its value decreases with an increase in the degree of conversion. With respect to the degree of conversation, the activation energy varied between 60.34 and 140.94, 51.77 and 138.84 and 52.31 and 139.13 kJ mol−1 for FWO, KAS and Tang method, respectively. The obtained values of activation energy by FWO, KAS and Tang methods were in good agreement. This result could be utilized to develop a kinetic model for the reactor and provide the knowledge of optimum process conditions required for the reactor.
Tài liệu tham khảo
Access to clean cooking energy and electricity, Survey of states, Council on energy, Environment and water, Columbia University, New York. (CEEW Report, 2015) http://ceew.in/pdf/CEEW-ACCESS-Report-29Sep15.pdf. Accessed from 21 Oct 2017
Central statistics office, Ministry of statistics and programme implementation, Government of India; New Delhi. (Energy statistic, 2013) http://mospi.nic.in/mospi_new/upload/ Energy_Statistics_2013.pdf?status=1&menu_id=216. Accessed from13 Feb 2014
J. Rizkiana, G. Guan, W.B. Widayatno, X. Hao, W. Huang, A. Tsutsumi, A. Abudula, Effect of biomass type on the performance of cogasification of low rank coal with biomass at relatively low temperatures. Fuel 134, 414 (2014). https://doi.org/10.1016/j.fuel.2014.06.008
X. Zhan, J. Jia, Z. Zhou, F. Wang, Influence of blending methods on the co-gasification reactivity of petroleum coke and lignite. Energy Convers. Manag. 52, 810 (2011). https://doi.org/10.1016/j.enconman.2010.11.009
L. Wei, L.O. Pordesimo, A. Haryanto, J. Wooten, Co-gasification of hardwood chips and crude glycerol in a pilot scale downdraft gasifier. Bioresour. Technol. 102, 6266 (2011). https://doi.org/10.1016/j.biortech.2011.02.109
I.Y. Elbyli, S. Piskin, Combustion and pyrolysis characteristics of tunçblek lignite. Therm. Anal. Calorim. 83, 721 (2006). https://doi.org/10.1007/s10973-005-9995-z
H. Barkia, L. Belkbir, S.A.A. Jayaweera, Kinetic studies of oxidation of residual carbon from moroccan oil shale kerogens. Therm. Anal Calorim 86, 121 (2006). https://doi.org/10.1007/s10973-006-7576-4
D.S. Thakur, H.E. Nuttall Jr., Kinetics of pyrolysis of Moroccan oil shale by thermogravimetry. Ind. Eng. Chem. Res. 26, 1351 (1987). https://doi.org/10.1021/ie00067a015
T.V. Lee, S.R. Beck, A new integral approximation formula for kinetic analysis of nonisothermal TGA data. AIChE J. 30, 517 (1984). https://doi.org/10.1002/aic.690300332
Y.H. Khraisha, I.M. Shabib, Thermal analysis of shale oil using thermogravimetry and differential scanning calorimetry. Energy Conserv. Manag. 43, 229 (2002). https://doi.org/10.1016/S0196-8904(01)00023-1
P. Simon, Isoconversional methods. Therm. Anal. Calorim. 76, 123 (2004). https://doi.org/10.1023/B:JTAN.0000027811.80036.6c
N. Sbirrazzuoli, L. Vincent, A. Mija, N. Guigo, Integral, differential and advanced isoconversional methods: complex mechanisms and isothermal predicted conversion–time curves. Chemom. Intell. Lab. Syst. 96, 219 (2009). https://doi.org/10.1016/j.chemolab.2009.02.002
A. Khawam, Application of Solid State-Kinetics to Desolvation Reactions [PhD Thesis] (Iowa University, Iowa, 2007)
Y. Han, Theoretical Study of Thermal Analysis Kinetics. PhD Thesis (University of Kentucky, United States, 2014)
M. Heydari, M. Rahman, R. Gupta, Kinetic study and thermal decomposition behavior of lignite coal. Int. J. Chem. Eng. (2015). https://doi.org/10.1155/2015/481739
K. Slopiecka, P. Bartocci, F. Fantozzi, Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy 97, 491 (2012). https://doi.org/10.1016/j.apenergy.2011.12.056
J.M. Cai, L.S. Bi, Kinetic analysis of wheat straw pyrolysis using isoconversional methods. J. Therm. Anal. Calorim. 98, 325 (2009). https://doi.org/10.1007/s10973-009-0325-8
P.E. Sánchez-Jiménez, L.A. Pérez-Maqueda, A. Perejón, J.M. Criado, Limitations of model-fitting methods for kinetic analysis: POLYSTYRENE thermal degradation. Resour. Conserv. Recycl. 74, 75 (2013). https://doi.org/10.1016/j.resconrec.2013.02.014
A. Dhaundiyal, A.T. Mohammad, T. Laszlo, Thermo-kinetics of Forest waste using model-free methods. Univ. Sci. 24(1), 1 (2019). https://doi.org/10.11144/Javeriana.SC24-1.tofw
J. Cai, D. Xu, Z. Dong, X. Yu, Y. Yang, S.W. Banks, A.V. Bridgwater, Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: case study of corn stalk. Renew. Sustain. Energy Rev. 82(3), 2705 (2018). https://doi.org/10.1016/j.rser.2017.09.113
M. Azam, A. Ashraf, S.S. Jahromy, W. Raza, H. Khalid, N. Raza, F. Winter, Isoconversional nonisothermal kinetic analysis of municipal solid waste, refuse-derived fuel, and coal. Energy Sci. Eng. 8, 3728 (2020). https://doi.org/10.1002/ese3.778
K.U.C. Perera, M. Narayana, Kissinger method: the sequential approach and DAEM for kinetic study of rubber and gliricidia wood. J. Natl. Sci. Found. 46(2), 187 (2018). https://doi.org/10.4038/jnsfsr.v46i2.8419
A. Soria-Verdugo, M.T. Morgano, H. Mätzing, E. Goos, H. Leibold, D. Merz, U. Riedel, D. Stapf, Comparison of wood pyrolysis kinetic data derived from thermogravimetric experiments by model-fitting and model-free methods. Energy Convers. Manag. 212, 112818 (2020). https://doi.org/10.1016/j.enconman.2020.112818
D. Joseph, B.R. Jesuretnam, K. Ramar, Thermal analysis and kinetic study of Indian almond leaf by model-free methods. J. Nat. Fibers (2021). https://doi.org/10.1080/15440478.2021.1889442
V. Dhyani, J. Kumar, T. Bhaskar, Thermal decomposition kinetics of sorghum straw via thermogravimetric analysis. Bioresour. Technol. 245, 1122 (2017). https://doi.org/10.1016/j.biortech.2017.08.189
Z. He, Z. Xia, J. Hu, L. Ma, Y. Li, Thermal decomposition and kinetics of electrically controlled solid propellant through thermogravimetric analysis. J. Therm. Anal. Calorim. 139, 2187 (2020). https://doi.org/10.1007/s10973-019-08608-8
R. Kaur, P. Gera, M.K. Jha, T. Bhaskar, Pyrolysis kinetics and thermodynamic parameters of castor (Ricinus communis) residue using thermogravimetric analysis. Bioresour. Technol. 250, 422 (2018). https://doi.org/10.1016/j.biortech.2017.11.077
B. Janković, N. Manić, I. Radović, M. Janković, M. Rajačić, Model-free and model-based kinetics of the combustion process of low rank coals with high ash contents using TGA-DTG-DTA-MS and FTIR techniques. Thermochim. Acta 679, 178337 (2019). https://doi.org/10.1016/j.tca.2019.178337
M.V. Gil, D. Casal, C. Pevida, J.J. Pis, F. Rubiera, Thermal behaviour and kinetics of coal/biomass blends during co-combustion. Biores. Technol. 101, 5601 (2010). https://doi.org/10.1016/j.biortech.2010.02.008
S.A. Epshtein, E.L. Kossovich, V.A. Kaminskii, N.M. Durov, N.N. Dobryakova, Solid fossil fuels thermal decomposition features in air and argon. Fuel 199, 145 (2017). https://doi.org/10.1016/j.fuel.2017.02.084
M.A. Garrido, R. Font, J.A. Conesa, Kinetic study and thermal decomposition behavior of viscoelastic memory foam. Energy Convers. Manag. 119, 327 (2016). https://doi.org/10.1016/j.enconman.2016.04.048
M.A. Martin-Lara, I.I. Rodriguez, G. Blazquez, L. Quesada, A. Perez, M. Calero, Kinetics of thermal decomposition of some biomasses in an inert environment. An investigation of the effect of lead loaded by biosorption. Waste Manag. 70, 101 (2017). https://doi.org/10.1016/j.wasman.2017.09.021
K. Chetehouna, N. Belayachi, B. Rengel, D. Hoxha, P. Gillard, Investigation on the thermal degradation and kinetic parameters of innovative insulation materials using TGA-MS. Appl. Therm. Eng. 81, 177 (2015). https://doi.org/10.1016/j.applthermaleng.2015.02.037
V.R. Patel, R.N. Patel, V.J. Rao, Kinetic parameter estimation of lignite by thermo-gravimetric analysis. Procedia Eng. 51, 727 (2013). https://doi.org/10.1016/j.proeng.2013.01.104
A. Blazek, Thermal Analysis (Van Nostrand-Reinhold Publisher, London, 1973)
X. Zhang, W. Jong, F. Preto, Estimating kinetic parameters in TGA using B-spline smoothing and the Friedman method. Biomass Bioenergy 33, 1435 (2009). https://doi.org/10.1016/j.biombioe.2009.06.009
J.H. Flynn, L.A. Wall, A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. Part C Polym. Lett. 4, 323 (1966). https://doi.org/10.1002/pol.1966.110040504
T. Ozawa, A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881 (1965). https://doi.org/10.1246/bcsj.38.1881
H.E. Kissinger, Variation of peak temperature with heating rate in differential thermal analysis. J. Res. Natl. Bur. Stand. 57, 217 (1956). https://doi.org/10.6028/jres.057.026
T. Akahira, T. Sunose, Joint convention of four electrical institutes. Sci. Technol. 16, 22 (1971)
W. Tang, Y. Liu, H. Zhang, C. Wang, New approximate formula for Arrhenius temperature integral. Thermochim. Acta 408, 39 (2003). https://doi.org/10.1016/S0040-6031(03)00310-1
T. Wanjun, L. Yuwen, Z. Hen, W. Zhiyong, W. Cunxin, New temperature integral approximate formula for non-isothermal kinetic analysis. J. Therm. Anal. Calorim. 74, 309 (2003). https://doi.org/10.1023/A:1026310710529
P. Pintana, N. Tippayawong, Nonisothermal thermogravimetric analysis of thai lignite with high CaO content. Sci. World J. (2013). https://doi.org/10.1155/2013/216975
D.K. Shen, S. Gu, K.H. Luo, A.V. Bridgwater, M.X. Fang, Kinetic study on thermal decomposition of woods in oxidative environment. Fuel 88, 1024 (2009). https://doi.org/10.1016/j.fuel.2008.10.034
R. Ebrahimi-Kahrizsangi, M.H. Abbasi, Evaluation of reliability of Coats-Redfern method for kinetic analysis of non-isothermal TGA. Trans. Nonferr. Met. Soc. China 18, 217 (2008). https://doi.org/10.1016/S1003-6326(08)60039-4