Kinetic Aspects of Ti2AlC MAX Phase Oxidation

Springer Science and Business Media LLC - Tập 83 - Trang 351-366 - 2015
J. L. Smialek1
1NASA Glenn Research Center, Cleveland, USA

Tóm tắt

The oxidation kinetics of a commercial Ti2AlC MAX phase compound were measured in 100 h isothermal thermogravimetric tests at 1,100, 1,200, and 1,300 °C. A significant amount of transient oxidation took place during the initial 5 min of heating due to the rapid growth of non-protective TiO2 scales. After correcting for this amount, shown as a knee in log–log plots, the mass gain was similar to that for alumina-forming FeCrAl alloys. Nearly t1/3 cubic kinetics were obeyed, as reported in the literature. An activation energy of ~340 kJ/mol was found, similar to ~380 kJ/mol previously demonstrated for grain boundary oxygen diffusivity. Power law fitting accounts for grain coarsening effects on an otherwise fundamentally parabolic scaling process. In summation, cubic steady-state Ti2AlC oxidation kinetics are consistent with grain boundary diffusion mechanisms for alumina scales.

Tài liệu tham khảo

M. W. Barsoum and T. El-Raghy, American Scientist 89, 334 (2001). M. Sundberg, G. Malmqvist, A. Magnusson and T. El-Raghy, Ceramics International 30, 1899 (2004). D. J. Tallman, B. Anasori and M. W. Barsoum, Materials Research Letters 1, 115 (2013). X. H. Wang and Y. C. Zhou, Oxidation of Metals 59, 303 (2003). J. W. Byeon, J. Liu, M. Hopkins, W. Fischer, N. Garimella, K. B. Park, M. P. Brady, M. Radovic, T. El-Raghy and Y. H. Sohn, Oxidation of Metals 68, 97 (2007). Z. J. Lin, M. S. Li, J. Y. Wang and Y. C. Zhou, Scripta Materialia 58, 29 (2008). S. Basu, N. Obando, A. Gowdy, I. Karaman and M. Radovic, Journal of the Electrochemical Society 159, C90 (2012). G. M. Song, V. Schnabel, C. Kwakernaak, S. van der Zwaag, J. M. Schneider and W. G. Sloof, Materials at High Temperatures 29, 205 (2012). X. H. Wang, F. Z. Li, J. X. Chen and Y. C. Zhou, Corrosion Science 58, 95 (2012). D. Naumenko, B. Gleeson, E. Wessel, L. Singheiser and W. J. Quadakkers, Metallurgical and Materials Transactions A 38, 2974 (2007). D. J. Young, D. Naumenko, L. Niewolak, E. Wessel, L. Singheiser and W. J. Quadakkers, Materials and Corrosion 61, 838 (2010). J. L. Smialek, N. S. Jacobson, B. Gleeson, D. B. Hovis and A. H. Heuer, NASA Technical Memorandum 217855, 1 (2013). J. L. Smialek, Corrosion Science 91, 281 (2015). J. L. Smialek, NASA Technical Memorandum 2014-218344, 1 (2014). B. Pieraggi, Oxidation of Metals 27, 177 (1987). M. Wada, T. Matsudaira and S. Kitaoka, Journal of the Ceramic Society of Japan 119, 832 (2011). D. Monceau and B. Pieraggi, Oxidation of Metals 50, 477 (1998). Z. Liu, W. Gao and Y. He, Oxidation of Metals 53, 341 (2000). W. J. Quadakkers, Materials and Corrosion 668, 659 (1990). V. Tolpygo, Grain Coarsening in Alumina Scales and its Effect on the Oxidation Kinetics of Fe-Cr-Al Alloys, Presentation at High Temperature Corrosion and Protection of Materials, 2008.