Kinetic Analysis of Tropical Lignocellulosic Agrowaste Pyrolysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ullah K, Kumar Sharma V, Dhingra S et al (2015) Assessing the lignocellulosic biomass resources potential in developing countries: a critical review. Renew Sust Energ Rev 51:682–698. doi: 10.1016/j.rser.2015.06.044
Escalante H, Orduz J, Zapata HJ, et al (2010) Potencial energético de la biomasa residual. In: Ministerio de Minas y Energia - Republica de Colombia (ed) Atlas del Potencial Energético Biomasa Residual en Colomb. pp 155–172
García NJ a, EE YA (2010) Generación y uso de biomasa en plantas de beneficio de palma de aceite en Colombia—Power generation and use of biomass at palm oil mills in Colombia. Rev Palmas 31:41–48
Food and Agriculture Organisation of the United Nations (2014) FAO statistical yearbook 2014: Latin America and the Caribbean. Santiago de Chile
Fryda L, Daza C, Pels J et al (2014) Lab-scale co-firing of virgin and torrefied bamboo species Guadua angustifolia Kunth as a fuel substitute in coal fired power plants. Biomass Bioenergy 65:28–41. doi: 10.1016/j.biombioe.2014.03.044
Londoño X, Camayo GC, Riaño N, López Y (2002) Characterization of the anatomy of Guadua angustifolia (Poaceae: Bambusoideae) culms. Bamboo Sci Cult 16:18–31
Kuo P-C, Wu W, Chen W-H (2014) Gasification performances of raw and torrefied biomass in a downdraft fixed bed gasifier using thermodynamic analysis. Fuel 117:1231–1241. doi: 10.1016/j.fuel.2013.07.125
Wongsiriamnuay T, Kannang N, Tippayawong N (2013) Effect of operating conditions on catalytic gasification of bamboo in a fluidized bed. Int J Chem Eng. doi: 10.1155/2013/297941
Chen D, Liu D, Zhang H et al (2015) Bamboo pyrolysis using TG–FTIR and a lab-scale reactor: analysis of pyrolysis behavior, product properties, and carbon and energy yields. Fuel 148:79–86. doi: 10.1016/j.fuel.2015.01.092
Forero Núñez CA, Cediel A, Hernández LC, et al (2012) Oil palm empty bunch fruits and coconut shells gasification using a lab-scale downdraft fixed bed gasifier at Universidad Nacional de Colombia. In: 20th Eur. Conf. Exhib. Milan, Italy, pp 1112–1114
Romero Millán LM, Cruz Domínguez MA, Sierra Vargas FE (2016) Efecto de la temperatura en el potencial de aprovechamiento energético de los productos de la pirólisis del cuesco de palma. Rev Tecnura 20:89–99. doi: 10.14483/udistrital.jour.tecnura.2016.2.a06
Basu P (2013) Pyrolysis. In: Biomass gasification, pyrolysis and torrefaction, Second Edi. Elsevier Inc., London, pp 147–176
David E, Kopac J (2014) Activated carbons derived from residual biomass pyrolysis and their CO2 adsorption capacity. J Anal Appl Pyrolysis 110:322–332. doi: 10.1016/j.jaap.2014.09.021
Ye L, Zhang J, Zhao J et al (2015) Properties of biochar obtained from pyrolysis of bamboo shoot shell. J Anal Appl Pyrolysis 114:172–178. doi: 10.1016/j.jaap.2015.05.016
Abnisa F, Arami-Niya A, Wan Daud WMA et al (2013) Utilization of oil palm tree residues to produce bio-oil and bio-char via pyrolysis. Energy Convers Manag 76:1073–1082. doi: 10.1016/j.enconman.2013.08.038
White JE, Catallo WJ, Legendre BL (2011) Biomass pyrolysis kinetics: a comparative critical review with relevant agricultural residue case studies. J Anal Appl Pyrolysis 91:1–33. doi: 10.1016/j.jaap.2011.01.004
Vyazovkin S, Wight CA (1999) Model-free and model-fitting approaches to kinetic analysis of isothermal and nonisothermal data. Thermochim Acta 340:53–68. doi: 10.1016/S0040-6031(99)00253-1
Vyazovkin S, Burnham AK, Criado JM et al (2011) ICTAC kinetics committee recommendations for performing kinetic computations on thermal analysis data. Thermochim Acta 520:1–19. doi: 10.1016/j.tca.2011.03.034
Huang X, Cao J-P, Zhao X-Y et al (2016) Pyrolysis kinetics of soybean straw using thermogravimetric analysis. Fuel 169:93–98. doi: 10.1016/j.fuel.2015.12.011
Ma Z, Chen D, Gu J et al (2015) Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers Manag 89:251–259. doi: 10.1016/j.enconman.2014.09.074
Slopiecka K, Bartocci P, Fantozzi F (2012) Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl Energy 97:491–497. doi: 10.1016/j.apenergy.2011.12.056
Wang X, Hu M, Hu W et al (2016) Thermogravimetric kinetic study of agricultural residue biomass pyrolysis based on combined kinetics. Bioresour Technol 219:510–520. doi: 10.1016/j.biortech.2016.07.136
Perejón A, Sánchez-Jiménez PE, Criado JM, Pérez-Maqueda LA (2011) Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J Phys Chem B 115:1780–1791. doi: 10.1021/jp110895z
Hu M, Chen Z, Wang S et al (2016) Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Convers Manag 118:1–11. doi: 10.1016/j.enconman.2016.03.058
Janković B (2015) Devolatilization kinetics of swine manure solid pyrolysis using deconvolution procedure. Determination of the bio-oil/liquid yields and char gasification. Fuel Process Technol 138:1–13. doi: 10.1016/j.fuproc.2015.04.027
Taghizadeh MT, Yeganeh N, Rezaei M (2014) Kinetic analysis of the complex process of poly(vinyl alcohol) pyrolysis using a new coupled peak deconvolution method. J Therm Anal Calorim 118:1733–1746. doi: 10.1007/s10973-014-4036-4
Cuéllar A, Muñoz I (2010) Fibra de guadua como refuerzo de matrices poliméricas - Bamboo fiber reinforcement for polymer matrix. DYNA 77:137–142. doi: 10.15446/dyna
Mortley Q, Mellowes WA, Thomas S (1988) Activated carbons from materials of varying morphological structure. Themochim Acta 129:173–186. doi: 10.1016/0040-6031(88)87334-9
García-Núñez JA, García-Pérez M, Das KC (2008) Determination of kinetic parameters of thermal degradation of palm oil mill by-products using thermogravimetric analysis and differential scanning calorimetry. Trans ASABE 51:547–557. doi: 10.13031/2013.24354
Brown ME (1998) Handbook of thermal analysis and calorimetry. Volume 1. Principles and practice, First Edit. Elsevier
Anca-Couce A, Berger A, Zobel N (2014) How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel 123:230–240. doi: 10.1016/j.fuel.2014.01.014
Anca-Couce A, Zobel N, Berger A, Behrendt F (2012) Smouldering of pine wood: kinetics and reaction heats. Combust Flame 159:1708–1719. doi: 10.1016/j.combustflame.2011.11.015
Svoboda R, Málek J (2013) Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J Therm Anal Calorim 111:1045–1056. doi: 10.1007/s10973-012-2445-9
Rajeshwari P, Dey TK (2016) Advanced isoconversional and master plot analyses on non-isothermal degradation kinetics of AlN (nano)-reinforced HDPE composites. J Therm Anal Calorim 125:369–386. doi: 10.1007/s10973-016-5406-x
Gotor FJ, Criado JM, Malek J, Koga N (2000) Kinetic analysis of solid-state reactions: the universality of master plots for analyzing isothermal and nonisothermal experiments. J Phys Chem A:10777–10782. doi: 10.1021/jp0022205
Sánchez-Jiménez PE, Pérez-Maqueda LA, Perejón A, Criado JM (2013) Generalized master plots as a straightforward approach for determining the kinetic model: the case of cellulose pyrolysis. Thermochim Acta 552:54–59. doi: 10.1016/j.tca.2012.11.003
Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters. Renew Sust Energ Rev 57:1126–1140. doi: 10.1016/j.rser.2015.12.185
Yang H, Yan R, Chen H et al (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788. doi: 10.1016/j.fuel.2006.12.013
Liu Q, Zhong Z, Wang S, Luo Z (2011) Interactions of biomass components during pyrolysis: a TG-FTIR study. J Anal Appl Pyrolysis 90:213–218. doi: 10.1016/j.jaap.2010.12.009
Mendu V, Harman-Ware AE, Crocker M et al (2011) Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnol Biofuels 4:43. doi: 10.1186/1754-6834-4-43
Collard F-X, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608. doi: 10.1016/j.rser.2014.06.013
Stefanidis SD, Kalogiannis KG, Iliopoulou EF et al (2014) A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J Anal Appl Pyrolysis 105:143–150. doi: 10.1016/j.jaap.2013.10.013
Jiang G, Nowakowski DJ, Bridgwater AV (2010) A systematic study of the kinetics of lignin pyrolysis. Thermochim Acta 498:61–66. doi: 10.1016/j.tca.2009.10.003
Caballero JA, Conesa JA, Font R, Marcilla A (1997) Pyrolysis kinetics of almond shells and olive stones considering their organic fractions. J Anal Appl Pyrolysis 42:159–175. doi: 10.1016/S0165-2370(97)00015-6
Chen Z, Hu M, Zhu X et al (2015) Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresour Technol 192:441–450. doi: 10.1016/j.biortech.2015.05.062
Barneto AG, Carmona JA, Alfonso JEM, Serrano RS (2010) Simulation of the thermogravimetry analysis of three non-wood pulps. Bioresour Technol 101:3220–3229. doi: 10.1016/j.biortech.2009.12.034
Branca C, Albano A, Di Blasi C (2005) Critical evaluation of global mechanisms of wood devolatilization. Thermochim Acta 429:133–141. doi: 10.1016/j.tca.2005.02.030
Gani A, Naruse I (2007) Effect of cellulose and lignin content on pyrolysis and combustion characteristics for several types of biomass. Renew Energy 32:649–661. doi: 10.1016/j.renene.2006.02.017
Lv D, Xu M, Liu X et al (2010) Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process Technol 91:903–909. doi: 10.1016/j.fuproc.2009.09.014
Hu S, Jess A, Xu M (2007) Kinetic study of Chinese biomass slow pyrolysis: comparison of different kinetic models. Fuel 86:2778–2788. doi: 10.1016/j.fuel.2007.02.031
Sanchez-Jimenez PE, Pérez-Maqueda LA, Perejon A, Criado JM (2010) Generalized kinetic master plots for the thermal degradation of polymers following a random scission mechanism. J Phys Chem A 114:7868–7876. doi: 10.1021/jp103171h