Kinematic vorticity analysis along the Karakoram Shear Zone, Pangong Mountains, Karakoram: Implications for the India–Asia tectonics

Geological Society of India - Tập 87 - Trang 249-260 - 2016
Priyom Roy1, A. K. Jain2, Sandeep Singh3
1National Remote Sensing Centre, Indian Space Research Organization, Hyderabad, India
2CSIR-Central Building Research Institute, Roorkee, India
3Department of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee, India

Tóm tắt

The Karakoram Shear Zone (KSZ) is a northwest-southeast trending dextral ductile shear zone that has mylonitized the Tangste and Darbuk granitoids of the southern margin of the Asian plate. Kinematic vorticity (Wk) has been estimated in 6 mylonitized Tangste granite samples, using Porphyroclast Hyperbolic Distribution (PHD) and Shear Band (SB) Analyses methods on well-developed quartz and feldspar porphyroclasts, and synthetic and antithetic shear bands respectively to visualize the overall deformation of the KSZ. The PHD and SB analyses yield Wk values ranging from Wk=0.29 to 0.43 and 0.45 to 0.93, respectively, thus indicating distinct pure and simple shear dominant regimes during different stages of the evolution of the KSZ. Strain has essentially been pure shear when southern edge of the Asian plate was initially juxtaposed against the Indian plate around 70 Ma, and changed to simple shear, possibly during the reactivation of this shear zone during 21-13 Ma to produce the shear bands.

Tài liệu tham khảo

Armijo, R., Tapponnier, P. and Tonglin, H. (1989) Late Cenozoic right-lateral strike slip faulting in southern Tibet. Jour. Geophys. Res., v.94, pp.2787–2838. Avouac, J.-P. and Tapponnier, P. (1993) Kinematic model for active deformation in Central Asia. Geophys. Res. Lett., v.20, pp.895–898. Bobyarchick, A.R. (1986) The eigenvalues of steady flow in Mohr space. Tectonophysics. v.122, pp.35–51. Brown, E.T., Bendick, R., Bourles, D.L., Gaur, V., Molnar, P., Raisbeck, G.M. and Yiou, F. (2002) Slip rates of the Karakoram fault, Ladakh, India, determined using cosmic ray exposure dating of debris flows and moraines. Jour. Geophys. Res., v.107(B9) 2192, doi:10.1029/2000JB000100. Boutonnet, E., Leloup, P.H., Arnaud, N., Paquette, J.-L. and Davis, W.J. (2012) Synkinematic magmatism, heterogeneous deformation, and progressive strain localization in a strikeslip shear zone: The case of the right-lateral Karakorum fault. Tectonics, v.31, TC4012, doi:10.1029/2011TC003049. Davis, W.J. (2012) Synkinematic magmatism, heterogeneous deformation, and progressive strain localization in a strikeslip shear zone: The case of the right-lateral Karakorum fault. Tectonics, v.31, TC4012, doi:10.1029/2011TC003049. De Paor, D.G. (1988) Rf/f strain analysis using an orientation net. Jour. of Struct. Geol. v.10, pp. 323–333. Dewey, J.F., Shackleton, R.M., Chang, C. and SUN, Y. (1988). The tectonic evolution of the Tibetan Plateau. Phil. Trans. Royal Soc. London, v.327, pp.379–413. Forte, A.M. and Bailey, C.M. (2007) Testing the utility of the porphyroclast hyperbolic distribution method of kinematic vorticity analysis. Jour. Struct. Geol doi:10.1016j.jsg. 2007.01.006 Fossen, H. (2010) Structural Geology. Cambridge University Press 978-0-521-51664-8. Jain, A.K. and Singh, S. (2008) Tectonics of the southern Asian Plate margin along the Karakoram Shear Zone: Constraints from field observations and U–Pb SHRIMP ages. Tectonophysics, v.451, pp.186–205. Jain, A.K. and Singh, S. (2009) Geology and tectonics of southeast Ladakh and Karakoram. Geol. Soc. India, 181p. Jain, A.K., Manickavasagam, R.M. and Singh, Sandeep (2002) Himalayan collision tectonics. Gondwana Res. Group Mem., v.7, pp.114. Jain, A.K., Singh, S. and Gupta, K.R. (2007) A late Cretaceous Karakoram Shear zone and its reactivation during the late Cenozoic. Gondwana Res. Group Mem., v.10, pp.77–88. Jain, A.K., Singh, S., Manickavasagam, R.M., Joshi, M. and Verma, P.K. (2003) HIMPROBE Programme: integrated studies on geology, petrology, geochronology and geophysics of the trans-Himalaya and Karakoram. In: T.M. Mahadevan, B.R., Arora and K.R. Gupta, (Eds.), Indian Continental Lithosphere: Emerging Research Trends. Mem. Geol. Soc. India, No.53, pp.1–56. Klepeis, K.A., Daczko, N.R. and Clarke, G.L. (1999) Kinematic vorticity and tectonic significance of superposed mylonites in a major lower crustal shear zone, northern Fiordland, New Zealand. Jour. Struct. Geol., v.21, pp.1385–1405. Kurz, G.A. and Northrup, C.J. (2008) Structural analysis of mylonitic rocks in the Cougar Creek Complex, Oregon–Idaho using the porphyroclast hyperbolic distribution method and potential use of SC’-type extensional shear bands as quantitative vorticity indicators. Jour. Struct. Geol., v.30, pp.1005–1012. Lacassin, R., Valli, F., Arnaud, N., Leloup, P.H., Paquette, J.L., Haibing, L., Tapponnier, P., Chevalier, M.-L., Guillot, S., Maheo, G. and Zhiqin, X. (2004) Large-scale geometry, offset and kinematic evolution of the Karakoram. Earth Planet. Sci. Lett., v.219, pp.255–269. Leloup, P.H., Boutonnet, E., Davis, W.J. and Hattori, K. (2011) Long-lasting intracontinental strike-slip faulting: New evidence from the Karakorum shear zone in the Himalayas. Terra Nova, v. 23, pp.92–99. Lister, G.S. and Snoke, A.W. (1984) C–S mylonites. Jour. Struct. Geol., v.6, pp.617–638. Mamtani, M.A., PAL, T. and Greiling, R.O. (2013) Kinematic analysis using AMS data from a deformed granitoid. Jour. Struct. Geol., v.50, pp.119–132. doi:10.1016/j.jsg.2012.03.002. Mamtani, M.A. (2014) Magnetic fabric as a vorticity gauge in syntectonically deformed granitic rocks. Tectonophysics, v.629, pp.189–196. Murphy, M.A., Yin, A., Kapp, P., Harrison, T.M., Ding, L. and Guo, J. (2000) Southward propagation of the Karakoram fault system, southwest Tibet: timing and magnitude of slip. Geology, v.28, pp.451–454. Nyman, M.W., Law, R.D. and Smelik, E. (1992) Cataclastic deformation mechanism for the development of core-mantle structures in amphibole. Geology, v.20, pp.455–458. Passchier, C.W. (1987) Stable positions of rigid objects in noncoaxial flow, a study in vorticity analysis. Jour. Struct. Geol., v.9, pp.679–690. Passchier, C.W. and Simpson, C. (1986) Porphyroblast system as kinematic indicators. Jour. Struct. Geol. v.8, pp.831–844. Passchier, C.W. and Trouw, R.A.J. (1996) Microtectonics, Springer-Verlag. 289 p. Phillips, R.J., Parrish, R.R. and Searle, M.P. (2004) Age constraints on ductile deformation and long-term slip rates along the Karakoram fault zone, Ladakh. Earth Planet. Sci. Lett., v.26, pp.305–319. Phillips, R.J. and Searle, M.P. (2007) Macrostructural and microstructural architecture of the Karakoram Fault: Relationship between magmatism and strike-slip faulting. Tectonics, v.26, TC3017, doi:10.1029/2006TC001946. Rolland, Y. and Pecher, A. (2001) The Pangong granulites of the Karakoram Fault (Western Tibet): vertical extrusion within a lithospheric-scale fault. Comptes Rendus de l’Academy des Sciences, Paris, v.332, pp.363–370. Roy, P., Jain, A.K. and Singh S. (2010) Microstructures of mylonites along the Karakoram Shear Zone, Tangste Valley, Pangong Mountains, Karakoram. Jour. Geol. Soc. India, v.75, pp.679–694, doi:10.1007/s12594-010-0065-1. Rutter, E.H., Faulkner, D.R, Brodie, K.H., Phillips R.J. and Searle, M.P. (2007) Rock deformation processes in the Karakoram fault zone, Eastern Karakoram, Ladakh, NW India. Jour. Struct. Geol., v.15, pp.1315–1326. Searle, M.P. (1996) Geological evidence against large-scale pre-Holocene offsets along the Karakoram Fault: implications for the limited extrusions of the Tibetan Plateau. Tectonics, v.15, pp.171–186. Simpson, C. and De Paor, D.G. (1993) Strain and kinematic analysis in general shear zones. Jour. Struct. Geol., v.15, pp.1–20. Simpson, C. and De Paor, D.G. (1997) Practical analysis of general shear zones using the porphyroclast hyperbolic distribution method: an example from the Scandinavian Caledonides. In: Sengupta, S. (Ed.),. Chapman & Hall, London, pp. 169–184. Singh, S., Kumar, R., Barley, M.E. and Jain, A.K. (2007) SHRIMP U–Pb ages and depth of emplacement of Ladakh Batholith, eastern Ladakh, India. Jour. Asian Earth Sci., v.30, pp.490–503. Srimal, N. (1986) India–Asia collision: implications from the geology of the eastern Karakoram. Geology, v.14, pp.523–527. Tikoff, B. and Fossen, H. (1995) The limitations of threedimensional kinematic vorticity analysis. Jour. Struct. Geol., v.17, pp.1771–1784. Valli, F., Leloup, P.H., Paquette, J.-L., Arnaud, N., Li, H., Tapponnier, P., Lacassin, R., Guillot, ST., Liu, D., Deloule, E., Xu, Zh. and Mahéo, G. (2008) New U-Th/Pb constraints on timing of shearing and long-term slip-rate on the Karakorum fault. Tectonics, v.27, TC5007, doi:10.1029/2007TC002184. Wallis, S.R. (1995) Vorticity analysis and recognition of ductile extension in the Sanbagawa belt, SW Japan. Jour. Struct. Geol., v.17, pp.1077–1093. Wallis, S.R., Platt, J.P. and Knott, S.D. (1993) Recognition of syn-convergence extension in accretionary wedges with examples from the Calabrian Arand the Eastern Alps. Amer. Jour. Sci., v.293, pp.463–494. Weinberg, R.F., Dunlap, W.J. and Whitehouse, M. (2000) New field, structural and geochronological data from the Shyok and Nubra valleys, northern Ladakh: linking Kohistan to Tibet. In: Khan, M.A., Treloar, P.J., Searle, M.P., Jan, M.Q. (Eds.), Tectonics of the Nanga Parbat Syntaxis and the Western Himalaya. Geol. Soc. London Spec. Publ., v.170, pp.253–275. Xypolias, P. (2010) Vorticity analysis in shear zones: A review of methods and applications. Jour. Struct. Geol. v.32, pp.2072–2092. Yin, A., Harrison, T.M., Murphy, M.A., Grove, M., Nie, S., Ryerson, F.J., Feng, Wang Xiao and LE, Chen Zheng (1999) Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geol. Soc. Amer. Bull., v.111, pp.1644–1664.