Kilonovae

Brian D. Metzger1
1Department of Physics, Columbia Astrophysics Laboratory, Columbia University, New York, NY, 10027, USA

Tóm tắt

Tóm tắt

Sự hợp nhất của các cặp sao neutron (NS–NS) và sao đen (BH)–sao neutron là các nguồn chính của sóng hấp dẫn (GW) cho LIGO/Virgo nâng cao và các thiết bị phát hiện mặt đất trong tương lai. Vật chất giàu neutron giải phóng từ các sự kiện như vậy sẽ trải qua quá trình bắt neutron nhanh (r-process) và tổng hợp hạt nhân khi nó nở ra vào không gian, làm phong phú vũ trụ của chúng ta với các nguyên tố nặng hiếm như vàng và bạch kim. Sự phân rã phóng xạ của những hạt nhân không ổn định này tạo ra một sự bùng nổ nhiệt độ phát triển nhanh chóng, được gọi là “kilonova”, mà qua đó có thể khảo sát các điều kiện vật lý trong quá trình hợp nhất và hậu quả của nó. Trong bài viết này, tôi sẽ xem xét lịch sử và vật lý của kilonovae, dẫn đến thuyết hiện tại về phát xạ trên thang thời gian ngày tại các bước sóng quang học từ các thành phần không có lanthanide của vật chất phun ra, đi kèm theo sự phát xạ kéo dài hàng tuần với đỉnh quang phổ nằm trong vùng hồng ngoại gần (NIR). Những dự đoán lý thuyết này, như đã được tổng hợp trong phiên bản ban đầu của bài đánh giá này, đã được xác nhận phần lớn bởi tương tác quang học/NIR tạm thời được phát hiện đến từ sự hợp nhất NS–NS đầu tiên, GW170817, do LIGO/Virgo phát hiện. Sử dụng một mô hình đường cong sáng đơn giản để minh họa các quá trình vật lý thiết yếu và ứng dụng của chúng vào GW170817, tôi sau đó giới thiệu những biến thể quan trọng về bức tranh tiêu chuẩn mà có thể quan sát được trong các vụ hợp nhất trong tương lai. Những điều này bao gồm $$\sim $$ phát xạ UV tiền thân kéo dài hàng giờ, được cung cấp năng lượng bởi sự phân rã của các neutron tự do trong các lớp vật chất phun ra ngoài cùng hoặc do nhiệt độ sốc từ việc phun ra bởi một dòng chảy siêu tương đối trì hoãn; và sự gia tăng độ sáng từ một động cơ trung tâm lâu bền, chẳng hạn như một sao đen đang hấp thụ vật chất hoặc một magnetar tích điện. Các quan sát sóng hấp dẫn và kilonova chung của GW170817 và các sự kiện trong tương lai cung cấp một con đường mới để ràng buộc nguồn gốc vũ trụ học của các nguyên tố r-process và phương trình trạng thái của vật chất hạt nhân dày đặc.

Từ khóa


Tài liệu tham khảo

Abadie J et al (2010) Predictions for the rates of compact binary coalescences observable by ground-based gravitational-wave detectors. Class Quantum Grav 27:173001. https://doi.org/10.1088/0264-9381/27/17/173001. arXiv:1003.2480

Abbott BP et al (2016a) Binary black hole mergers in the first advanced LIGO observing run. Phys Rev X 6(4):041015. https://doi.org/10.1103/PhysRevX.6.041015. arXiv:1606.04856

Abbott BP et al (2016b) Localization and broadband follow-up of the gravitational-wave transient GW150914. Astrophys J Lett 826:L13. https://doi.org/10.3847/2041-8205/826/1/L13. arXiv:1602.08492

Abbott BP et al (2016c) Observation of gravitational waves from a binary black hole merger. Phys Rev Lett 116:061102. https://doi.org/10.1103/PhysRevLett.116.061102. arXiv:1602.03837

Abbott BP et al (2016) Astrophysical implications of the binary black-hole merger GW150914. Astrophys J Lett 818(2):L22. https://doi.org/10.3847/2041-8205/818/2/L22. arXiv:1602.03846

Abbott BP et al (2017a) A gravitational-wave standard siren measurement of the Hubble constant. Nature 551:85–88. https://doi.org/10.1038/nature24471. arXiv:1710.05835

Abbott BP et al (2017b) GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys Rev Lett 119(16):161101. https://doi.org/10.1103/PhysRevLett.119.161101. arXiv:1710.05832

Abbott BP et al (2017c) Multi-messenger observations of a binary neutron star merger. Astrophys J Lett 848(2):L12. https://doi.org/10.3847/2041-8213/aa91c9. arXiv:1710.05833

Abbott BP et al (2017d) Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817A. Astrophys J Lett 848(2):L13. https://doi.org/10.3847/2041-8213/aa920c. arXiv:1710.05834

Abbott BP et al (2017e) Search for post-merger gravitational waves from the remnant of the binary neutron star merger GW170817. Astrophys J Lett 851(1):L16. https://doi.org/10.3847/2041-8213/aa9a35. arXiv:1710.09320

Abbott BP et al (2018) GW170817: measurements of neutron star radii and equation of state. Phys Rev Lett 121(16):161101. https://doi.org/10.1103/PhysRevLett.121.161101. arXiv:1805.11581

Abbott BP et al (2019a) Properties of the binary neutron star merger GW170817. Phys Rev X 9(1):011001. https://doi.org/10.1103/PhysRevX.9.011001. arXiv:1805.11579

Abbott BP et al (2019b) GWTC-1: A Gravitational-Wave Transient Catalog of compact ninary mergers observed by LIGO and Virgo during the first and second observing runs. Phys Rev X 9:031040. https://doi.org/10.1103/PhysRevX.9.031040. arXiv:1811.12907

Abbott BP et al (2019c) Tests of general relativity with the binary black hole signals from the LIGO-Virgo catalog GWTC-1. arXiv e-prints arXiv:1903.04467

Alexander KD, Berger E, Fong W, Williams PKG, Guidorzi C, Margutti R, Metzger BD, Annis J, Blanchard PK, Brout D (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VI. Radio constraints on a relativistic jet and predictions for late-time emission from the kilonova ejecta. Astrophys J Lett 848(2):L21. https://doi.org/10.3847/2041-8213/aa905d. arXiv:1710.05457

Andreoni I et al (2017) Follow up of GW170817 and its electromagnetic counterpart by australian-led observing programmes. Publ Astron Soc Australia 34:e069. https://doi.org/10.1017/pasa.2017.65. arXiv:1710.05846

Antoniadis J et al (2013) A massive pulsar in a compact relativistic binary. Science 340:448. https://doi.org/10.1126/science.1233232. arXiv:1304.6875

Arcavi I (2018) The first hours of the GW170817 kilonova and the importance of early optical and ultraviolet observations for constraining emission models. Astrophys J Lett 855(2):L23. https://doi.org/10.3847/2041-8213/aab267. arXiv:1802.02164

Arcavi I, Hosseinzadeh G, Howell DA, McCully C, Poznanski D, Kasen D, Barnes J, Zaltzman M, Vasylyev S, Maoz D, Valenti S (2017a) Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551(7678):64–66. https://doi.org/10.1038/nature24291. arXiv:1710.05843

Arcavi I, McCully C, Hosseinzadeh G, Howell DA, Vasylyev S, Poznanski D, Zaltzman M, Maoz D, Singer L, Valenti S, Kasen D, Barnes J, Piran T, Wf Fong (2017b) Optical follow-up of gravitational-wave events with Las Cumbres observatory. Astrophys J Lett 848(2):L33. https://doi.org/10.3847/2041-8213/aa910f. arXiv:1710.05842

Arcones A, Janka HT, Scheck L (2007) Nucleosynthesis-relevant conditions in neutrino-driven supernova outflows. I. Spherically symmetric hydrodynamic simulations. Astron Astrophys 467:1227–1248. https://doi.org/10.1051/0004-6361:20066983. arXiv:astro-ph/0612582

Arnett WD (1982) Type I supernovae. I. Analytic solutions for the early part of the light curve. Astrophys J 253:785–797. https://doi.org/10.1086/159681

Arnould M, Goriely S, Takahashi K (2007) The $$r$$-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries. Phys Rep 450:97–213. https://doi.org/10.1016/j.physrep.2007.06.002. arXiv:0705.4512

Ascenzi S, De Lillo N, Haster CJ, Ohme F, Pannarale F (2019) Constraining the neutron star radius with joint gravitational-wave and short gamma-ray burst observations of neutron star-black hole coalescing binaries. Astrophys J 877(2):94. https://doi.org/10.3847/1538-4357/ab1b15. arXiv:1808.06848

Baiotti L (2019) Gravitational waves from neutron star mergers and their relation to the nuclear equation of state. arXiv e-prints arXiv:1907.08534

Baiotti L, Rezzolla L (2017) Binary neutron-star mergers: a review of Einstein’s richest laboratory. Rep Prog Phys. https://doi.org/10.1088/1361-6633/aa67bb. arXiv:1607.03540

Banerjee P, Haxton WC, Qian YZ (2011) Long, cold, early $$r$$ process? Neutrino-induced nucleosynthesis in he shells revisited. Phys Rev Lett 106:201104. https://doi.org/10.1103/PhysRevLett.106.201104. arXiv:1103.1193

Barnes J, Kasen D (2013) Effect of a high opacity on the light curves of radioactively powered transients from compact object mergers. Astrophys J 775:18. https://doi.org/10.1088/0004-637X/775/1/18. arXiv:1303.5787

Barnes J, Kasen D, Wu MR, Martínez-Pinedo G (2016) Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys J 829:110. https://doi.org/10.3847/0004-637X/829/2/110. arXiv:1605.07218

Bartos I, Marka S (2019) A nearby neutron-star merger explains the actinide abundances in the early solar system. Nature 569(7754):85–88. https://doi.org/10.1038/s41586-019-1113-7

Bartos I, Huard TL, Márka S (2016) James Webb Space Telescope can detect kilonovae in gravitational wave follow-up search. Astrophys J 816:61. https://doi.org/10.3847/0004-637X/816/2/61. arXiv:1502.07426

Baumgarte TW, Shapiro SL, Shibata M (2000) On the maximum mass of differentially rotating neutron stars. Astrophys J Lett 528:L29–L32. https://doi.org/10.1086/312425. arXiv:astro-ph/9910565

Bauswein A, Baumgarte TW, Janka HT (2013a) Prompt merger collapse and the maximum mass of neutron stars. Phys Rev Lett 111(13):131101. https://doi.org/10.1103/PhysRevLett.111.131101. arXiv:1307.5191

Bauswein A, Goriely S, Janka HT (2013b) Systematics of dynamical mass ejection, nucleosynthesis, and radioactively powered electromagnetic signals from neutron-star mergers. Astrophys J 773:78. https://doi.org/10.1088/0004-637X/773/1/78. arXiv:1302.6530

Bauswein A, Just O, Janka HT, Stergioulas N (2017) Neutron-star radius constraints from GW170817 and future detections. Astrophys J Lett 850:L34. https://doi.org/10.3847/2041-8213/aa9994. arXiv:1710.06843

Belcher JW, MacGregor KB (1976) Magnetic acceleration of winds from solar-type stars. Astrophys J 210:498–507. https://doi.org/10.1086/154853

Beloborodov AM (2008) Hyper-accreting black holes. In: Axelsson M (ed) Cool discs, hot flows: the varying faces of accreting compact objects, AIP conference series, vol 1054. American Institute of Physics, Melville, NY, pp 51–70. https://doi.org/10.1063/1.3002509. arXiv:0810.2690

Beloborodov AM, Lundman C, Levin Y (2018) Relativistic envelopes and gamma-rays from neutron star mergers. arXiv e-prints arXiv:1812.11247

Beniamini P, Hotokezaka K, Piran T (2016) Natal kicks and time delays in merging neutron star binaries: implications for $$r$$-process nucleosynthesis in ultra-faint dwarfs and in the milky way. Astrophys J Lett 829:L13. https://doi.org/10.3847/2041-8205/829/1/L13. arXiv:1607.02148

Beniamini P, Petropoulou M, Barniol Duran R, Giannios D (2019) A lesson from GW170817: most neutron star mergers result in tightly collimated successful GRB jets. Mon Not R Astron Soc 483(1):840–851. https://doi.org/10.1093/mnras/sty3093. arXiv:1808.04831

Berger E (2014) Short-duration gamma-ray bursts. Annu Rev Astron Astrophys 52:43–105. https://doi.org/10.1146/annurev-astro-081913-035926. arXiv:1311.2603

Berger E, Fong W, Chornock R (2013) An $$r$$-process kilonova associated with the short-hard GRB 130603B. Astrophys J Lett 774:L23. https://doi.org/10.1088/2041-8205/774/2/L23. arXiv:1306.3960

Bhattacharya M, Kumar P, Smoot G (2019) Mergers of black hole-neutron star binaries and rates of associated electromagnetic counterparts. Mon Not R Astron Soc 486(4):5289–5309. https://doi.org/10.1093/mnras/stz1147. arXiv:1809.00006

Biscoveanu S, Vitale S, Haster CJ (2019) The reliability of the low-latency estimation of binary neutron star chirp mass. arXiv e-prints arXiv:1908.03592

Blanchard PK, Berger E, Fong W, Nicholl M, Leja J, Conroy C, Alexander KD, Margutti R, Williams PKG, Doctor Z, Chornock R, Villar VA, Cowperthwaite PS, Annis J, Brout D, Brown DA, Chen HY, Eftekhari T, Frieman JA, Holz DE, Metzger BD, Rest A, Sako M, Soares-Santos M (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VII. Properties of the host galaxy and constraints on the merger timescale. Astrophys J Lett 848(2):L22. https://doi.org/10.3847/2041-8213/aa9055. arXiv:1710.05458

Blinnikov SI, Novikov ID, Perevodchikova TV, Polnarev AG (1984) Exploding neutron stars in close binaries. Sov Astro Lett 10:177–179

Bloom JS, Sigurdsson S (2017) A cosmic multimessenger gold rush. Science 358(6361):301–302. https://doi.org/10.1126/science.aaq0321

Bloom JS, Holz DE, Hughes SA, Menou K, Adams A, Anderson SF, Becker A, Bower GC, Brandt N, Cobb B, Cook K, Corsi A, Covino S, Fox D, Fruchter A, Fryer C, Grindlay J, Hartmann D, Haiman Z, Kocsis B, Jones L, Loeb A, Marka S, Metzger B, Nakar E, Nissanke S, Perley DA, Piran T, Poznanski D, Prince T, Schnittman J, Soderberg A, Strauss M, Shawhan PS, Shoemaker DH, Sievers J, Stubbs C, Tagliaferri G, Ubertini P, Wozniak P (2009) Astro2010 decadal survey whitepaper: coordinated science in the gravitational and electromagnetic skies. ArXiv e-prints arXiv:0902.1527

Bloom JS et al (2006) Closing in on a short-hard burst progenitor: constraints from early-time optical imaging and spectroscopy of a possible host galaxy of GRB 050509b. Astrophys J 638:354–368. https://doi.org/10.1086/498107. arXiv:astro-ph/0505480

Bonetti M, Perego A, Dotti M, Cescutti G (2019) Neutron star binary orbits in their host potential: effect on early r-process enrichment. arXiv e-prints arXiv:1905.12016

Bovard L, Martin D, Guercilena F, Arcones A, Rezzolla L, Korobkin O (2017) r -process nucleosynthesis from matter ejected in binary neutron star mergers. Phys Rev D 96(12):124005. https://doi.org/10.1103/PhysRevD.96.124005. arXiv:1709.09630

Bromberg O, Tchekhovskoy A (2016) Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation. Mon Not R Astron Soc 456:1739–1760. https://doi.org/10.1093/mnras/stv2591. arXiv:1508.02721

Bromberg O, Tchekhovskoy A, Gottlieb O, Nakar E, Piran T (2018) The $$\gamma $$-rays that accompanied GW170817 and the observational signature of a magnetic jet breaking out of NS merger ejecta. Mon Not R Astron Soc 475(3):2971–2977. https://doi.org/10.1093/mnras/stx3316. arXiv:1710.05897

Bucciantini N, Metzger BD, Thompson TA, Quataert E (2012) Short gamma-ray bursts with extended emission from magnetar birth: jet formation and collimation. Mon Not R Astron Soc 419:1537–1545. https://doi.org/10.1111/j.1365-2966.2011.19810.x. arXiv:1106.4668

Buckley DAH, Andreoni I, Barway S, Cooke J, Crawford SM, Gorbovskoy E, Gromadzki M, Lipunov V, Mao J, Potter SB, Pretorius ML, Pritchard TA, Romero-Colmenero E, Shara MM, Väisänen P, Williams TB (2018) A comparison between SALT/SAAO observations and kilonova models for AT 2017gfo: the first electromagnetic counterpart of a gravitational wave transient—GW170817. Mon Not R Astron Soc 474(1):L71–L75. https://doi.org/10.1093/mnrasl/slx196. arXiv:1710.05855

Bulla M, Covino S, Kyutoku K, Tanaka M, Maund JR, Patat F, Toma K, Wiersema K, Bruten J, Jin ZP, Testa V (2019) The origin of polarization in kilonovae and the case of the gravitational-wave counterpart AT 2017gfo. Nat Astron 3:99–106. https://doi.org/10.1038/s41550-018-0593-y. arXiv:1809.04078

Burbidge EM, Burbidge GR, Fowler WA, Hoyle F (1957) Synthesis of the elements in stars. Rev Mod Phys 29:547–650. https://doi.org/10.1103/RevModPhys.29.547

Burbidge GR, Hoyle F, Burbidge EM, Christy RF, Fowler WA (1956) Californium-254 and supernovae. Phys Rev 103:1145–1149. https://doi.org/10.1103/PhysRev.103.1145

Camelio G, Dietrich T, Rosswog S (2018) Disc formation in the collapse of supramassive neutron stars. Mon Not R Astron Soc 480(4):5272–5285. https://doi.org/10.1093/mnras/sty2181. arXiv:1806.07775

Cameron AGW (1957) Nuclear reactions in stars and nucleogenesis. Publ Astron Soc Pac 69:201. https://doi.org/10.1086/127051

Cannon K, Cariou R, Chapman A, Crispin-Ortuzar M, Fotopoulos N, Frei M, Hanna C, Kara E, Keppel D, Liao L, Privitera S, Searle A, Singer L, Weinstein A (2012) Toward early-warning detection of gravitational waves from compact binary coalescence. Astrophys J 748:136. https://doi.org/10.1088/0004-637X/748/2/136. arXiv:1107.2665

Cantiello M, Jensen JB, Blakeslee JP, Berger E, Levan AJ, Tanvir NR, Raimondo G, Brocato E, Alexander KD, Blanchard PK (2018) A precise distance to the host galaxy of the binary neutron star merger GW170817 using surface brightness fluctuations. Astrophys J 854(2):L31. https://doi.org/10.3847/2041-8213/aaad64. arXiv:1801.06080

Cardall CY, Fuller GM (1997) General relativistic effects in the neutrino-driven wind and $$r$$-process nucleosynthesis. Astrophys J Lett 486:L111–L114. https://doi.org/10.1086/310838. arXiv:astro-ph/9701178

Chawla S, Anderson M, Besselman M, Lehner L, Liebling SL, Motl PM, Neilsen D (2010) Mergers of magnetized neutron stars with spinning black holes: disruption, accretion, and fallback. Phys Rev Lett 105(11):111101. https://doi.org/10.1103/PhysRevLett.105.111101. arXiv:1006.2839

Chen HY, Holz DE (2017) Facilitating follow-up of LIGO-Virgo events using rapid sky localization. ApJ 840:88. https://doi.org/10.3847/1538-4357/aa6f0d. arXiv:1509.00055

Chen HY, Vitale S, Narayan R (2019) On the viewing angle of binary neutron star mergers. Phys Rev X 9:031028. https://doi.org/10.1103/PhysRevX.9.031028. arXiv:1807.05226

Cherchneff I, Dwek E (2009) The chemistry of population III supernova ejecta. I. Formation of molecules in the early universe. Astrophys J 703:642–661. https://doi.org/10.1088/0004-637X/703/1/642. arXiv:0907.3621

Chornock R et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. IV. Detection of near-infrared signatures of r-process nucleosynthesis with Gemini-south. Astrophys J Lett 848(2):L19. https://doi.org/10.3847/2041-8213/aa905c. arXiv:1710.05454

Christie IM, Lalakos A, Tchekhovskoy A, Fernández R, Foucart F, Quataert E, Kasen D (2019) The role of magnetic field geometry in the evolution of neutron star merger accretion discs. Mon Not R Astron Soc 490(4):4811–4825. https://doi.org/10.1093/mnras/stz2552. arXiv:1907.02079

Ciolfi R, Kastaun W, Giacomazzo B, Endrizzi A, Siegel DM, Perna R (2017) General relativistic magnetohydrodynamic simulations of binary neutron star mergers forming a long-lived neutron star. Phys Rev D 95(6):063016. https://doi.org/10.1103/PhysRevD.95.063016. arXiv:1701.08738

Corsi A, Mészáros P (2009) Gamma-ray burst afterglow plateaus and gravitational waves: multi-messenger signature of a millisecond magnetar? Astrophys J 702(2):1171–1178. https://doi.org/10.1088/0004-637X/702/2/1171. arXiv:0907.2290

Côté B, Fryer CL, Belczynski K, Korobkin O, Chruślińska M, Vassh N, Mumpower MR, Lippuner J, Sprouse TM, Surman R, Wollaeger R (2018) The origin of r-process elements in the Milky Way. Astrophys J 855(2):99. https://doi.org/10.3847/1538-4357/aaad67. arXiv:1710.05875

Côté B, Eichler M, Arcones A, Hansen CJ, Simonetti P, Frebel A, Fryer CL, Pignatari M, Reichert M, Belczynski K (2019a) Neutron star mergers might not be the only source of r-process elements in the Milky Way. Astrophys J 875(2):106. https://doi.org/10.3847/1538-4357/ab10db. arXiv:1809.03525

Côté B, Lugaro M, Reifarth R, Pignatari M, Világos B, Yagüe A, Gibson BK (2019b) Galactic chemical evolution of radioactive isotopes. Astrophys J 878:156. https://doi.org/10.3847/1538-4357/ab21d1. arXiv:1905.07828

Coughlin MW, Dietrich T, Doctor Z, Kasen D, Coughlin S, Jerkstrand A, Leloudas G, McBrien O, Metzger BD, O’Shaughnessy R, Smartt SJ (2018) Constraints on the neutron star equation of state from AT2017gfo using radiative transfer simulations. Mon Not R Astron Soc 480(3):3871–3878. https://doi.org/10.1093/mnras/sty2174. arXiv:1805.09371

Coughlin MW, Dietrich T, Margalit B, Metzger BD (2019) Multimessenger Bayesian parameter inference of a binary neutron star merger. Mon Not R Astron Soc 489(1):L91–L96. https://doi.org/10.1093/mnrasl/slz133. arXiv:1812.04803

Coulter DA, Foley RJ, Kilpatrick CD, Drout MR, Piro AL, Shappee BJ, Siebert MR, Simon JD, Ulloa N, Kasen D, Madore BF, Murguia-Berthier A, Pan YC, Prochaska JX, Ramirez-Ruiz E, Rest A, Rojas-Bravo C (2017) Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358(6370):1556–1558. https://doi.org/10.1126/science.aap9811. arXiv:1710.05452

Covino S, Wiersema K, Fan YZ, Toma K, Higgins AB, Melandri A, D’Avanzo P, Mundell CG, Palazzi E, Tanvir NR, Bernardini MG, Branchesi M, Brocato E, Campana S, di Serego Alighieri S, Götz D, Fynbo JPU, Gao W, Gomboc A, Gompertz B, Greiner J, Hjorth J, Jin ZP, Kaper L, Klose S, Kobayashi S, Kopac D, Kouveliotou C, Levan AJ, Mao J, Malesani D, Pian E, Rossi A, Salvaterra R, Starling RLC, Steele I, Tagliaferri G, Troja E, van der Horst AJ, Wijers RAMJ (2017) The unpolarized macronova associated with the gravitational wave event GW 170817. Nat Astron 1:791–794. https://doi.org/10.1038/s41550-017-0285-z. arXiv:1710.05849

Cowan JJ, Sneden C, Lawler JE, Aprahamian A, Wiescher M, Langanke K, Martínez-Pinedo G, Thielemann FK (2019) Making the heaviest elements in the universe: a review of the rapid neutron capture process. arXiv e-prints arXiv:1901.01410

Cowperthwaite PS, Berger E (2015) A comprehensive study of detectability and contamination in deep rapid optical searches for gravitational wave counterparts. Astrophys J 814:25. https://doi.org/10.1088/0004-637X/814/1/25. arXiv:1503.07869

Cowperthwaite PS, Berger E, Villar VA et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. II. UV, optical, and near-infrared light curves and comparison to kilonova models. Astrophys J Lett 848:L17. https://doi.org/10.3847/2041-8213/aa8fc7. arXiv:1710.05840

Cromartie HT, Fonseca E, Ransom SM, Demorest PB, Arzoumanian Z, Blumer H, Brook PR, DeCesar ME, Dolch T, Ellis JA, Ferdman RD, Ferrara EC, Garver–Daniels N, Gentile PA, Jones ML, Lam MT, Lorimer DR, Lynch RS, McLaughlin MA, Ng C, Nice DJ, Pennucci TT, Spiewak R, Stairs IH, Stovall K, Swiggum JK, Zhu WW (2019) Relativistic Shapiro delay measurements of an extremely massive millisecond pulsar. Nat Astron. https://doi.org/10.1038/41550-019-0880-2. arXiv:1904.06759

Dall’Osso S, Stella L (2007) Newborn magnetars as sources of gravitational radiation: constraints from high energy observations of magnetar candidates. Astrophys Space Sci 308(1–4):119–124. https://doi.org/10.1007/s10509-007-9323-0. arXiv:astro-ph/0702075

Dall’Osso S, Shore SN, Stella L (2009) Early evolution of newly born magnetars with a strong toroidal field. Mon Not R Astron Soc 398:1869–1885. https://doi.org/10.1111/j.1365-2966.2008.14054.x. arXiv:0811.4311

Davies MB, Benz W, Piran T, Thielemann FK (1994) Merging neutron stars. I. Initial results for coalescence of noncorotating systems. Astrophys J 431:742–753. https://doi.org/10.1086/174525. arXiv:astro-ph/9401032

De S, Finstad D, Lattimer JM, Brown DA, Berger E, Biwer CM (2018) Tidal deformabilities and radii of neutron stars from the observation of GW170817. Phys Rev Lett 121(9):091102. https://doi.org/10.1103/PhysRevLett.121.091102. arXiv:1804.08583

Demorest PB, Pennucci T, Ransom SM, Roberts MSE, Hessels JWT (2010) A two-solar-mass neutron star measured using Shapiro delay. Nature 467:1081–1083. https://doi.org/10.1038/nature09466. arXiv:1010.5788

Dermer CD, Atoyan A (2006) Collapse of neutron stars to black holes in binary systems: a model for short gamma-ray bursts. Astrophys J Lett 643:L13–L16. https://doi.org/10.1086/504895. arXiv:astro-ph/0601142

Desai D, Metzger BD, Foucart F (2019) Imprints of r-process heating on fall-back accretion: distinguishing black hole-neutron star from double neutron star mergers. Mon Not R Astron Soc 485(3):4404–4412. https://doi.org/10.1093/mnras/stz644. arXiv:1812.04641

Dessart L, Ott CD, Burrows A, Rosswog S, Livne E (2009) Neutrino signatures and the neutrino-driven wind in binary neutron star mergers. Astrophys J 690:1681–1705. https://doi.org/10.1088/0004-637X/690/2/1681. arXiv:0806.4380

Dexter J, Kasen D (2013) Supernova light curves powered by fallback accretion. Astrophys J 772(1):30. https://doi.org/10.1088/0004-637X/772/1/30. arXiv:1210.7240

Díaz MC et al (2017) Observations of the first electromagnetic counterpart to a gravitational-wave source by the TOROS collaboration. Astrophys J Lett 848(2):L29. https://doi.org/10.3847/2041-8213/aa9060. arXiv:1710.05844

Dietrich T, Ujevic M (2017) Modeling dynamical ejecta from binary neutron star mergers and implications for electromagnetic counterparts. Class Quantum Grav 34(10):105014. https://doi.org/10.1088/1361-6382/aa6bb0. arXiv:1612.03665

Dietrich T, Bernuzzi S, Ujevic M, Tichy W (2017a) Gravitational waves and mass ejecta from binary neutron star mergers: effect of the stars’ rotation. Phys Rev D 95(4):044045. https://doi.org/10.1103/PhysRevD.95.044045. arXiv:1611.07367

Dietrich T, Ujevic M, Tichy W, Bernuzzi S, Brügmann B (2017b) Gravitational waves and mass ejecta from binary neutron star mergers: effect of the mass ratio. Phys Rev D 95(2):024029. https://doi.org/10.1103/PhysRevD.95.024029. arXiv:1607.06636

Dominik M, Berti E, O’Shaughnessy R, Mandel I, Belczynski K, Fryer C, Holz DE, Bulik T, Pannarale F (2015) Double compact objects. III. Gravitational-wave detection rates. Astrophys J 806:263. https://doi.org/10.1088/0004-637X/806/2/263. arXiv:1405.7016

Doneva DD, Kokkotas KD, Pnigouras P (2015) Gravitational wave afterglow in binary neutron star mergers. Phys Rev D 92:104040. https://doi.org/10.1103/PhysRevD.92.104040. arXiv:1510.00673

Drout MR et al (2017) Light curves of the neutron star merger GW170817/SSS17a: implications for r-process nucleosynthesis. Science 358(6370):1570–1574. https://doi.org/10.1126/science.aaq0049. arXiv:1710.05443

Duez MD, Liu YT, Shapiro SL, Shibata M, Stephens BC (2006) Collapse of magnetized hypermassive neutron stars in general relativity. Phys Rev Lett 96:031101. https://doi.org/10.1103/PhysRevLett.96.031101. arXiv:astro-ph/0510653

Duffell PC, Quataert E, MacFadyen AI (2015) A narrow short-duration GRB jet from a wide central engine. Astrophys J 813:64. https://doi.org/10.1088/0004-637X/813/1/64. arXiv:1505.05538

Duffell PC, Quataert E, Kasen D, Klion H (2018) Jet dynamics in compact object mergers: GW170817 likely had a successful jet. Astrophys J 866(1):3. https://doi.org/10.3847/1538-4357/aae084. arXiv:1806.10616

Duflo J, Zuker AP (1995) Microscopic mass formulas. Phys Rev C 52(1):R23–R27. https://doi.org/10.1103/PhysRevC.52.R23. arXiv:nucl-th/9505011

Duncan RC, Shapiro SL, Wasserman I (1986) Neutrino-driven winds from young, hot neutron stars. Astrophys J 309:141–160. https://doi.org/10.1086/164587

East WE, Pretorius F, Stephens BC (2012) Eccentric black hole-neutron star mergers: effects of black hole spin and equation of state. Phys Rev D 85:124009. https://doi.org/10.1103/PhysRevD.85.124009. arXiv:1111.3055

East WE, Paschalidis V, Pretorius F, Tsokaros A (2019) Binary neutron star mergers: effects of spin and post-merger dynamics. arXiv e-prints arXiv:1906.05288

Eichler D, Livio M, Piran T, Schramm DN (1989) Nucleosynthesis, neutrino bursts and gamma-rays from coalescing neutron stars. Nature 340:126–128. https://doi.org/10.1038/340126a0

Eichler M, Arcones A, Kelic A, Korobkin O, Langanke K, Marketin T, Martinez-Pinedo G, Panov I, Rauscher T, Rosswog S, Winteler C, Zinner NT, Thielemann FK (2015) The role of fission in neutron star mergers and its impact on the $$r$$-process peaks. Astrophys J 808:30. https://doi.org/10.1088/0004-637X/808/1/30. arXiv:1411.0974

Evans PA et al (2017) Swift and NuSTAR observations of GW170817: detection of a blue kilonova. Science 358(6370):1565–1570. https://doi.org/10.1126/science.aap9580. arXiv:1710.05437

Even W, Korobkin O, Fryer CL, Fontes CJ, Wollaeger RT, Hungerford A, Lippuner J, Miller J, Mumpower MR, Misch GW (2019) Composition effects on kilonova spectra and light curves: I. arXiv e-prints arXiv:1904.13298

Faber JA, Rasio FA (2012) Binary neutron star mergers. Living Rev Relativ 15:lrr-2012-8. https://doi.org/10.12942/lrr-2012-8. arXiv:1204.3858

Fahlman S, Fernández R (2018) Hypermassive neutron star disk outflows and blue kilonovae. Astrophys J Lett 869(1):L3. https://doi.org/10.3847/2041-8213/aaf1ab. arXiv:1811.08906

Fairhurst S (2011) Source localization with an advanced gravitational wave detector network. Class Quantum Grav 28:105021. https://doi.org/10.1088/0264-9381/28/10/105021. arXiv:1010.6192

Falcke H, Rezzolla L (2014) Fast radio bursts: the last sign of supramassive neutron stars. Astron Astrophys 562:A137. https://doi.org/10.1051/0004-6361/201321996. arXiv:1307.1409

Fan X, Hendry M (2015) Multimessenger astronomy. ArXiv e-prints arXiv:1509.06022

Fang K, Metzger BD (2017) High-energy neutrinos from millisecond magnetars formed from the merger of binary neutron stars. Astrophys J 849(2):153. https://doi.org/10.3847/1538-4357/aa8b6a. arXiv:1707.04263

Fernández R, Metzger BD (2013) Delayed outflows from black hole accretion tori following neutron star binary coalescence. Mon Not R Astron Soc 435:502–517. https://doi.org/10.1093/mnras/stt1312. arXiv:1304.6720

Fernández R, Metzger BD (2016) Electromagnetic signatures of neutron star mergers in the advanced LIGO era. Annu Rev Nucl Part Sci 66:23–45. https://doi.org/10.1146/annurev-nucl-102115-044819. arXiv:1512.05435

Fernández R, Kasen D, Metzger BD, Quataert E (2015a) Outflows from accretion discs formed in neutron star mergers: effect of black hole spin. Mon Not R Astron Soc 446:750–758. https://doi.org/10.1093/mnras/stu2112. arXiv:1409.4426

Fernández R, Quataert E, Schwab J, Kasen D, Rosswog S (2015b) The interplay of disc wind and dynamical ejecta in the aftermath of neutron star-black hole mergers. Mon Not R Astron Soc 449:390–402. https://doi.org/10.1093/mnras/stv238. arXiv:1412.5588

Fernández R, Tchekhovskoy A, Quataert E, Foucart F, Kasen D (2019) Long-term GRMHD simulations of neutron star merger accretion discs: implications for electromagnetic counterparts. Mon Not R Astron Soc 482(3):3373–3393. https://doi.org/10.1093/mnras/sty2932. arXiv:1808.00461

Finstad D, De S, Brown DA, Berger E, Biwer CM (2018) Measuring the viewing angle of GW170817 with electromagnetic and gravitational waves. Astrophys J 860(1):L2. https://doi.org/10.3847/2041-8213/aac6c1. arXiv:1804.04179

Fischer T, Whitehouse SC, Mezzacappa A, Thielemann FK, Liebendörfer M (2010) Protoneutron star evolution and the neutrino-driven wind in general relativistic neutrino radiation hydrodynamics simulations. Astron Astrophys 517:A80. https://doi.org/10.1051/0004-6361/200913106. arXiv:0908.1871

Fong W, Berger E (2013) The locations of short gamma-ray bursts as evidence for compact object binary progenitors. Astrophys J 776:18. https://doi.org/10.1088/0004-637X/776/1/18. arXiv:1307.0819

Fong W, Berger E, Metzger BD, Margutti R, Chornock R, Migliori G, Foley RJ, Zauderer BA, Lunnan R, Laskar T, Desch SJ, Meech KJ, Sonnett S, Dickey CM, Hedlund AM, Harding P (2014) Short GRB130603B: discovery of a jet break in the optical and radio afterglows, and a mysterious late-time X-ray excess. Astrophys J 780:118. https://doi.org/10.1088/0004-637X/780/2/118. arXiv:1309.7479

Fong W, Berger E, Margutti R, Zauderer BA (2015) A decade of short-duration gamma-ray burst broadband afterglows: energetics, circumburst densities, and jet opening angles. Astrophys J 815:102. https://doi.org/10.1088/0004-637X/815/2/102. arXiv:1509.02922

Fong W, Margutti R, Chornock R, Berger E, Shappee BJ, Levan AJ, Tanvir NR, Smith N, Milne PA, Laskar T, Fox DB, Lunnan R, Blanchard PK, Hjorth J, Wiersema K, van der Horst AJ, Zaritsky D (2016a) The afterglow and early-type host galaxy of the short GRB 150101B at $$z=0.1343$$. Astrophys J 833:151. https://doi.org/10.3847/1538-4357/833/2/151. arXiv:1608.08626

Fong W, Metzger BD, Berger E, Özel F (2016b) Radio constraints on long-lived magnetar remnants in short gamma-ray bursts. Astrophys J 831:141. https://doi.org/10.3847/0004-637X/831/2/141. arXiv:1607.00416

Fong W, Berger E, Blanchard PK, Margutti R, Cowperthwaite PS, Chornock R, Alexander KD, Metzger BD, Villar VA, Nicholl M (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. VIII. A comparison to cosmological short-duration gamma-ray bursts. Astrophys J 848(2):L23. https://doi.org/10.3847/2041-8213/aa9018. arXiv:1710.05438

Fontes CJ, Fryer CL, Hungerford AL, Hakel P, Colgan J, Kilcrease DP, Sherrill ME (2015) Relativistic opacities for astrophysical applications. High Energy Density Phys 16:53–59. https://doi.org/10.1016/j.hedp.2015.06.002

Fontes CJ, Fryer CL, Hungerford AL, Wollaeger RT, Rosswog S, Berger E (2017) A line-smeared treatment of opacities for the spectra and light curves from macronovae. ArXiv e-prints arXiv:1702.02990

Foucart F (2012) Black-hole-neutron-star mergers: disk mass predictions. Phys Rev D 86:124007. https://doi.org/10.1103/PhysRevD.86.124007. arXiv:1207.6304

Foucart F, O’Connor E, Roberts L, Duez MD, Haas R, Kidder LE, Ott CD, Pfeiffer HP, Scheel MA, Szilagyi B (2015) Post-merger evolution of a neutron star-black hole binary with neutrino transport. Phys Rev D 91:124021. https://doi.org/10.1103/PhysRevD.91.124021. arXiv:1502.04146

Foucart F, Desai D, Brege W, Duez MD, Kasen D, Hemberger DA, Kidder LE, Pfeiffer HP, Scheel MA (2017) Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state. Class Quantum Grav 34(4):044002. https://doi.org/10.1088/1361-6382/aa573b. arXiv:1611.01159

Foucart F, Hinderer T, Nissanke S (2018) Remnant baryon mass in neutron star-black hole mergers: predictions for binary neutron star mimickers and rapidly spinning black holes. Phys Rev D 98(8):081501. https://doi.org/10.1103/PhysRevD.98.081501. arXiv:1807.00011

Fraija N, De Colle F, Veres P, Dichiara S, Barniol Duran R, Galvan-Gamez A (2019) The short GRB 170817A: modelling the off-axis emission and implications on the ejecta magnetization. Astrophys J 871:123. https://doi.org/10.3847/1538-4357/aaf564. arXiv:1710.08514

Freiburghaus C, Rosswog S, Thielemann F (1999) $$r$$-process in neutron star mergers. Astrophys J 525:L121–L124. https://doi.org/10.1086/312343

Fruchter AS et al (2006) Long $$\gamma $$-ray bursts and core-collapse supernovae have different environments. Nature 441:463–468. https://doi.org/10.1038/nature04787. arXiv:astro-ph/0603537

Fryer CL, Herwig F, Hungerford A, Timmes FX (2006) Supernova fallback: a possible site for the r-process. Astrophys J Lett 646(2):L131–L134. https://doi.org/10.1086/507071. arXiv:astro-ph/0606450

Fujibayashi S, Kiuchi K, Nishimura N, Sekiguchi Y, Shibata M (2018) Mass ejection from the remnant of a binary neutron star merger: viscous-radiation hydrodynamics study. Astrophys J 860(1):64. https://doi.org/10.3847/1538-4357/aabafd. arXiv:1711.02093

Gaensler BM, Slane PO (2006) The evolution and structure of pulsar wind nebulae. Annu Rev Astron Astrophys 44:17–47. https://doi.org/10.1146/annurev.astro.44.051905.092528. arXiv:astro-ph/0601081

Gall C, Hjorth J, Rosswog S, Tanvir NR, Levan AJ (2017) Lanthanides or dust in kilonovae: lessons learned from GW170817. Astrophys J Lett 849(2):L19. https://doi.org/10.3847/2041-8213/aa93f9. arXiv:1710.05863

Gao H, Ding X, Wu XF, Zhang B, Dai ZG (2013) Bright broadband afterglows of gravitational wave bursts from mergers of binary neutron stars. Astrophys J 771:86. https://doi.org/10.1088/0004-637X/771/2/86. arXiv:1301.0439

Gao H, Ding X, Wu XF, Dai ZG, Zhang B (2015) GRB 080503 late afterglow re-brightening: signature of a magnetar-powered merger-nova. Astrophys J 807:163. https://doi.org/10.1088/0004-637X/807/2/163. arXiv:1506.06816

Gao H, Cao Z, Ai S, Zhang B (2017) A more stringent constraint on the mass ratio of binary neutron star merger GW170817. Astrophys J Lett 851(2):L45. https://doi.org/10.3847/2041-8213/aaa0c6. arXiv:1711.08577

Gehrels N, Spergel D, WFIRST SDT Project (2015) Wide-field infrared survey telescope (WFIRST) mission and synergies with LISA and LIGO-Virgo. J Phys: Conf Ser 610:012007. https://doi.org/10.1088/1742-6596/610/1/012007. arXiv:1411.0313

Gehrels N, Cannizzo JK, Kanner J, Kasliwal MM, Nissanke S, Singer LP (2016) Galaxy strategy for LIGO-Virgo gravitational wave counterpart searches. Astrophys J 820:136. https://doi.org/10.3847/0004-637X/820/2/136. arXiv:1508.03608

Ghosh S, Bloemen S, Nelemans G, Groot PJ, Price LR (2016) Tiling strategies for optical follow-up of gravitational-wave triggers by telescopes with a wide field of view. Astron Astrophys 592:A82. https://doi.org/10.1051/0004-6361/201527712. arXiv:1511.02673

Giacomazzo B, Perna R (2013) Formation of stable magnetars from binary neutron star mergers. Astrophys J Lett 771:L26. https://doi.org/10.1088/2041-8205/771/2/L26. arXiv:1306.1608

Gold R, Bernuzzi S, Thierfelder M, Brügmann B, Pretorius F (2012) Eccentric binary neutron star mergers. Phys Rev D 86:121501. https://doi.org/10.1103/PhysRevD.86.121501. arXiv:1109.5128

Goldstein A et al (2017) An ordinary short gamma-ray burst with extraordinary implications: Fermi-GBM detection of GRB 170817A. Astrophys J Lett 848:L14. https://doi.org/10.3847/2041-8213/aa8f41. arXiv:1710.05446

Gompertz BP, Levan AJ, Tanvir NR, Hjorth J, Covino S, Evans PA, Fruchter AS, González-Fernández C, Jin ZP, Lyman JD, Oates SR, O’Brien PT, Wiersema K (2018) The diversity of kilonova emission in short gamma-ray bursts. Astrophys J 860(1):62. https://doi.org/10.3847/1538-4357/aac206. arXiv:1710.05442

Goriely S, Demetriou P, Janka HT, Pearson JM, Samyn M (2005) The $$r$$-process nucleosynthesis: a continued challenge for nuclear physics and astrophysics. Nucl Phys A 758:587–594. https://doi.org/10.1016/j.nuclphysa.2005.05.107. arXiv:astro-ph/0410429

Goriely S, Bauswein A, Janka HT (2011) $$r$$-process nucleosynthesis in dynamically ejected matter of neutron star mergers. Astrophys J Lett 738:L32. https://doi.org/10.1088/2041-8205/738/2/L32. arXiv:1107.0899

Gottlieb O, Nakar E, Piran T, Hotokezaka K (2018) A cocoon shock breakout as the origin of the $$\gamma $$-ray emission in GW170817. Mon Not R Astron Soc 479(1):588–600. https://doi.org/10.1093/mnras/sty1462. arXiv:1710.05896

Granot J, Guetta D, Gill R (2017) Lessons from the short GRB 170817A: the first gravitational-wave detection of a binary neutron star merger. Astrophys J 850(2):L24. https://doi.org/10.3847/2041-8213/aa991d. arXiv:1710.06407

Grossman D, Korobkin O, Rosswog S, Piran T (2014) The long-term evolution of neutron star merger remnants—II. Radioactively powered transients. Mon Not R Astron Soc 439:757–770. https://doi.org/10.1093/mnras/stt2503. arXiv:1307.2943

Haggard D, Nynka M, Ruan JJ, Kalogera V, Cenko SB, Evans P, Kennea JA (2017) A deep Chandra X-ray study of neutron star coalescence GW170817. Astrophys J Lett 848:L25. https://doi.org/10.3847/2041-8213/aa8ede. arXiv:1710.05852

Halevi G, Mösta P (2018) r-process nucleosynthesis from three-dimensional jet-driven core-collapse supernovae with magnetic misalignments. Mon Not R Astron Soc 477(2):2366–2375. https://doi.org/10.1093/mnras/sty797. arXiv:1801.08943

Hallinan G, Corsi A, Mooley KP, Hotokezaka K, Nakar E, Kasliwal MM, Kaplan DL, Frail DA, Myers ST, Murphy T (2017) A radio counterpart to a neutron star merger. Science 358(6370):1579–1583. https://doi.org/10.1126/science.aap9855. arXiv:1710.05435

Hjorth J, Levan AJ, Tanvir NR, Lyman JD, Wojtak R, Schrøder SL, Mandel I, Gall C, Bruun SH (2017) The distance to NGC 4993: the host galaxy of the gravitational-wave event GW170817. Astrophys J Lett 848(2):L31. https://doi.org/10.3847/2041-8213/aa9110. arXiv:1710.05856

Holmbeck EM, Sprouse TM, Mumpower MR, Vassh N, Surman R, Beers TC, Kawano T (2019) Actinide production in the neutron-rich ejecta of a neutron star merger. Astrophys J 870(1):23. https://doi.org/10.3847/1538-4357/aaefef. arXiv:1807.06662

Holz DE, Hughes SA (2005) Using gravitational-wave standard sirens. Astrophys J 629:15–22. https://doi.org/10.1086/431341. arXiv:astro-ph/0504616

Horesh A, Hotokezaka K, Piran T, Nakar E, Hancock P (2016) Testing the magnetar model via a late-time radio observations of two macronova candidates. Astrophys J Lett 819:L22. https://doi.org/10.3847/2041-8205/819/2/L22. arXiv:1601.01692

Horowitz CJ, Arcones A, Côté B, Dillmann I, Nazarewicz W, Roederer IU, Schatz H, Aprahamian A, Atanasov D, Bauswein A, Bliss J, Brodeur M, Clark JA, Frebel A, Foucart F, Hansen CJ, Just O, Kankainen A, McLaughlin GC, Kelly JM, Liddick SN, Lee DM, Lippuner J, Martin D, Mendoza-Temis J, Metzger BD, Mumpower MR, Perdikakis G, Pereira J, O’Shea BW, Reifarth R, Rogers AM, Siegel DM, Spyrou A, Surman R, Tang X, Uesaka T, Wang M (2019) r-process nucleosynthesis: connecting rare-isotope beam facilities with the cosmos. J Phys G: Nucl Part Phys 46:083001. https://doi.org/10.1088/1361-6471/ab0849. arXiv:1805.04637

Hotokezaka K, Kyutoku K, Okawa H, Shibata M, Kiuchi K (2011) Binary neutron star mergers: dependence on the nuclear equation of state. Phys Rev D 83:124008. https://doi.org/10.1103/PhysRevD.83.124008. arXiv:1105.4370

Hotokezaka K, Kiuchi K, Kyutoku K, Okawa H, Sekiguchi YI, Shibata M, Taniguchi K (2013a) Mass ejection from the merger of binary neutron stars. Phys Rev D 87:024001. https://doi.org/10.1103/PhysRevD.87.024001. arXiv:1212.0905

Hotokezaka K, Kyutoku K, Tanaka M, Kiuchi K, Sekiguchi Y, Shibata M, Wanajo S (2013b) Progenitor models of the electromagnetic transient associated with the short gamma ray burst 130603B. Astrophys J Lett 778:L16. https://doi.org/10.1088/2041-8205/778/1/L16. arXiv:1310.1623

Hotokezaka K, Piran T, Paul M (2015) Short-lived $$^{244}$$Pu points to compact binary mergers as sites for heavy $$r$$-process nucleosynthesis. Nature Phys 11:1042. https://doi.org/10.1038/nphys3574. arXiv:1510.00711

Hotokezaka K, Wanajo S, Tanaka M, Bamba A, Terada Y, Piran T (2016) Radioactive decay products in neutron star merger ejecta: heating efficiency and $$\gamma $$-ray emission. Mon Not R Astron Soc 459:35–43. https://doi.org/10.1093/mnras/stw404. arXiv:1511.05580

Hotokezaka K, Sari R, Piran T (2017) Analytic heating rate of neutron star merger ejecta derived from Fermi’s theory of beta decay. Mon Not R Astron Soc 468:91–96. https://doi.org/10.1093/mnras/stx411. arXiv:1701.02785

Hotokezaka K, Beniamini P, Piran T (2018) Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts. Int J Mod Phys D 27(13):1842005. https://doi.org/10.1142/S0218271818420051. arXiv:1801.01141

Howell EJ, Chu Q, Rowlinson A, Gao H, Zhang B, Tingay SJ, Boër M, Wen L (2016) Fast response electromagnetic follow-ups from low latency GW triggers. J Phys: Conf Ser 716:012009. https://doi.org/10.1088/1742-6596/716/1/012009. arXiv:1603.04120

Howell EJ, Ackley K, Rowlinson A, Coward D (2019) Joint gravitational wave–gamma-ray burst detection rates in the aftermath of GW170817. Mon Not R Astron Soc 485(1):1435–1447. https://doi.org/10.1093/mnras/stz455. arXiv:1811.09168

Hu L, Wu X, Andreoni I, Ashley MCB, Cooke J, Cui X, Du F, Dai Z, Gu B, Hu Y, Lu H, Li X, Li Z, Liang E, Liu L, Ma B, Shang Z, Sun T, Suntzeff NB, Tao C, Udden SA, Wang L, Wang X, Wen H, Xiao D, Su J, Yang J, Yang S, Yuan X, Zhou H, Zhang H, Zhou J, Zhu Z (2017) Optical observations of LIGO source GW 170817 by the Antarctic Survey Telescopes at Dome A, Antarctica. Sci Bull 62:1433–1438. https://doi.org/10.1016/j.scib.2017.10.006. arXiv:1710.05462

Hüdepohl L, Müller B, Janka HT, Marek A, Raffelt GG (2010) Neutrino signal of electron-capture supernovae from core collapse to cooling. Phys Rev Lett 104:251101. https://doi.org/10.1103/PhysRevLett.104.251101. arXiv:0912.0260

Hulse RA, Taylor JH (1975) Discovery of a pulsar in a binary system. Astrophys J Lett 195:L51–L53. https://doi.org/10.1086/181708

Hurley K (2013) All-sky monitoring of high-energy transients. In: Huber MCE, Pauluhn A, Culhane JL, Timothy JG, Wilhelm K, Zehnder A (eds) Observing photons in space: a guide to experimental space astronomy, ISSI Scientific Reports Series, vol 9. Springer, New York, pp 255–260. https://doi.org/10.1007/978-1-4614-7804-1_13

Im M, Yoon Y, Lee SKJ, Lee HM, Kim J, Lee CU, Kim SL, Troja E, Choi C, Lim G, Ko J, Shim H (2017) Distance and properties of NGC 4993 as the host galaxy of the gravitational-wave source GW170817. Astrophys J Lett 849(1):L16. https://doi.org/10.3847/2041-8213/aa9367. arXiv:1710.05861

Ishii A, Shigeyama T, Tanaka M (2018) Free neutron ejection from shock breakout in binary neutron star mergers. Astrophys J 861(1):25. https://doi.org/10.3847/1538-4357/aac385. arXiv:1805.04909

Ji AP, Frebel A, Chiti A, Simon JD (2016) R-process enrichment from a single event in an ancient dwarf galaxy. Nature 531:610–613. https://doi.org/10.1038/nature17425. arXiv:1512.01558

Jin ZP, Li X, Cano Z, Covino S, Fan YZ, Wei DM (2015) The light curve of the macronova associated with the long-short burst GRB 060614. Astrophys J Lett 811:L22. https://doi.org/10.1088/2041-8205/811/2/L22. arXiv:1507.07206

Jin ZP, Hotokezaka K, Li X, Tanaka M, D’Avanzo P, Fan YZ, Covino S, Wei DM, Piran T (2016) The macronova in GRB 050709 and the GRB-macronova connection. Nature Commun 7:12898. https://doi.org/10.1038/ncomms12898. arXiv:1603.07869

Just O, Bauswein A, Pulpillo RA, Goriely S, Janka HT (2015) Comprehensive nucleosynthesis analysis for ejecta of compact binary mergers. Mon Not R Astron Soc 448:541–567. https://doi.org/10.1093/mnras/stv009. arXiv:1406.2687

Kagawa Y, Yonetoku D, Sawano T, Toyanago A, Nakamura T, Takahashi K, Kashiyama K, Ioka K (2015) X-raying extended emission and rapid decay of short gamma-ray bursts. Astrophys J 811:4. https://doi.org/10.1088/0004-637X/811/1/4. arXiv:1506.02359

Kalogera V, Kim C, Lorimer DR, Burgay M, D’Amico N, Possenti A, Manchester RN, Lyne AG, Joshi BC, McLaughlin MA, Kramer M, Sarkissian JM, Camilo F (2004) Erratum: “The cosmic coalescence rates for double neutron star binaries” (ApJ, 601, L179 [2004]). Astrophys J Lett 614:L137–L138. https://doi.org/10.1086/425868. arXiv:astro-ph/0312101

Kaplan DL, Murphy T, Rowlinson A, Croft SD, Wayth RB, Trott CM (2016) Strategies for finding prompt radio counterparts to gravitational wave transients with the Murchison Widefield Array. Publ Astron Soc Australia 33:e050. https://doi.org/10.1017/pasa.2016.43. arXiv:1609.00634

Kaplan JD, Ott CD, O’Connor EP, Kiuchi K, Roberts L, Duez M (2014) The influence of thermal pressure on equilibrium models of hypermassive neutron star merger remnants. Astrophys J 790:19. https://doi.org/10.1088/0004-637X/790/1/19. arXiv:1306.4034

Kasen D, Barnes J (2019) Radioactive heating and late time kilonova light curves. Astrophys J 876(2):128. https://doi.org/10.3847/1538-4357/ab06c2. arXiv:1807.03319

Kasen D, Bildsten L (2010) Supernova light curves powered by young magnetars. Astrophys J 717:245–249. https://doi.org/10.1088/0004-637X/717/1/245. arXiv:0911.0680

Kasen D, Badnell NR, Barnes J (2013) Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys J 774:25. https://doi.org/10.1088/0004-637X/774/1/25. arXiv:1303.5788

Kasen D, Fernández R, Metzger BD (2015) Kilonova light curves from the disc wind outflows of compact object mergers. Mon Not R Astron Soc 450:1777–1786. https://doi.org/10.1093/mnras/stv721. arXiv:1411.3726

Kasen D, Metzger BD, Bildsten L (2016) Magnetar-driven shock breakout and double-peaked supernova light curves. Astrophys J 821(1):36. https://doi.org/10.3847/0004-637X/821/1/36. arXiv:1507.03645

Kasen D, Metzger B, Barnes J, Quataert E, Ramirez-Ruiz E (2017) Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature 551:80–84. https://doi.org/10.1038/nature24453. arXiv:1710.05463

Kasliwal MM, Nissanke S (2014) On discovering electromagnetic emission from neutron star mergers: the early years of two gravitational wave detectors. Astrophys J Lett 789:L5. https://doi.org/10.1088/2041-8205/789/1/L5. arXiv:1309.1554

Kasliwal MM, Kasen D, Lau RM, Perley DA, Rosswog S, Ofek EO, Hotokezaka K, Chary RR, Sollerman J, Goobar A, Kaplan DL (2019) Spitzer mid-infrared detections of neutron star merger GW170817 suggests synthesis of the heaviest elements. Mon Not R Astron Soc L14. https://doi.org/10.1093/mnrasl/slz007. arXiv:1812.08708

Kasliwal MM et al (2017) Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358(6370):1559–1565. https://doi.org/10.1126/science.aap9455. arXiv:1710.05436

Kawaguchi K, Kyutoku K, Nakano H, Okawa H, Shibata M, Taniguchi K (2015) Black hole-neutron star binary merger: dependence on black hole spin orientation and equation of state. Phys Rev D 92:024014. https://doi.org/10.1103/PhysRevD.92.024014. arXiv:1506.05473

Kawaguchi K, Kyutoku K, Shibata M, Tanaka M (2016) Models of kilonova/macronova emission from black hole-neutron star mergers. Astrophys J 825:52. https://doi.org/10.3847/0004-637X/825/1/52. arXiv:1601.07711

Kawaguchi K, Shibata M, Tanaka M (2018) Radiative transfer simulation for the optical and near-infrared electromagnetic counterparts to GW170817. Astrophys J Lett 865(2):L21. https://doi.org/10.3847/2041-8213/aade02. arXiv:1806.04088

Kelley LZ, Ramirez-Ruiz E, Zemp M, Diemand J, Mandel I (2010) The distribution of coalescing compact binaries in the local universe: prospects for gravitational-wave observations. Astrophys J Lett 725:L91–L96. https://doi.org/10.1088/2041-8205/725/1/L91. arXiv:1011.1256

Kennel CF, Coroniti FV (1984) Confinement of the Crab pulsar’s wind by its supernova remnant. Astrophys J 283:694–709. https://doi.org/10.1086/162356

Kilpatrick CD, Foley RJ, Kasen D, Murguia-Berthier A, Ramirez-Ruiz E, Coulter DA, Drout MR, Piro AL, Shappee BJ, Boutsia K, Contreras C, Di Mille F, Madore BF, Morrell N, Pan YC, Prochaska JX, Rest A, Rojas-Bravo C, Siebert MR, Simon JD, Ulloa N (2017) Electromagnetic evidence that SSS17a is the result of a binary neutron star merger. Science 358(6370):1583–1587. https://doi.org/10.1126/science.aaq0073. arXiv:1710.05434

Kim C, Perera BBP, McLaughlin MA (2015) Implications of PSR J0737–3039B for the galactic NS–NS binary merger rate. Mon Not R Astron Soc 448:928–938. https://doi.org/10.1093/mnras/stu2729. arXiv:1308.4676

Kisaka S, Ioka K (2015) Long-lasting black hole jets in short gamma-ray bursts. Astrophys J Lett 804:L16. https://doi.org/10.1088/2041-8205/804/1/L16. arXiv:1503.06791

Kisaka S, Ioka K, Nakar E (2016) X-ray-powered macronovae. Astrophys J 818:104. https://doi.org/10.3847/0004-637X/818/2/104. arXiv:1508.05093

Kisaka S, Ioka K, Sakamoto T (2017) Bimodal long-lasting components in short gamma-ray bursts: promising electromagnetic counterparts to neutron star binary mergers. Astrophys J 846(2):142. https://doi.org/10.3847/1538-4357/aa8775. arXiv:1707.00675

Kiuchi K, Kyutoku K, Sekiguchi Y, Shibata M, Wada T (2014) High resolution numerical relativity simulations for the merger of binary magnetized neutron stars. Phys Rev D 90:041502. https://doi.org/10.1103/PhysRevD.90.041502. arXiv:1407.2660

Kiuchi K, Sekiguchi Y, Kyutoku K, Shibata M, Taniguchi K, Wada T (2015) High resolution magnetohydrodynamic simulation of black hole-neutron star merger: mass ejection and short gamma ray bursts. Phys Rev D 92:064034. https://doi.org/10.1103/PhysRevD.92.064034. arXiv:1506.06811

Kiuchi K, Kyutoku K, Shibata M, Taniguchi K (2019) Revisiting the lower bound on tidal deformability derived by AT 2017gfo. Astrophys J Lett 876(2):L31. https://doi.org/10.3847/2041-8213/ab1e45. arXiv:1903.01466

Kiziltan B, Kottas A, De Yoreo M, Thorsett SE (2013) The neutron star mass distribution. Astrophys J 778(1):66. https://doi.org/10.1088/0004-637X/778/1/66. arXiv:1011.4291

Kocevski D, Thöne CC, Ramirez-Ruiz E, Bloom JS, Granot J, Butler NR, Perley DA, Modjaz M, Lee WH, Cobb BE, Levan AJ, Tanvir N, Covino S (2010) Limits on radioactive powered emission associated with a short-hard GRB 070724A in a star-forming galaxy. Mon Not R Astron Soc 404:963–974. https://doi.org/10.1111/j.1365-2966.2010.16327.x. arXiv:0908.0030

Kohri K, Narayan R, Piran T (2005) Neutrino-dominated accretion and supernovae. Astrophys J 629:341–361. https://doi.org/10.1086/431354. arXiv:astro-ph/0502470

Köppel S, Bovard L, Rezzolla L (2019) A general-relativistic determination of the threshold mass to prompt collapse in binary neutron star mergers. Astrophys J Lett 872(1):L16. https://doi.org/10.3847/2041-8213/ab0210. arXiv:1901.09977

Korobkin O, Rosswog S, Arcones A, Winteler C (2012) On the astrophysical robustness of the neutron star merger $$r$$-process. Mon Not R Astron Soc 426:1940–1949. https://doi.org/10.1111/j.1365-2966.2012.21859.x. arXiv:1206.2379

Korobkin O, Hungerford AM, Fryer CL, Mumpower MR, Misch GW, Sprouse TM, Lippuner J, Surman R, Couture AJ, Bloser PF, Shirazi F, Even WP, Vestrand WT, Miller RS (2019) Gamma-rays from kilonova: a potential probe of r-process nucleosynthesis. arXiv e-prints arXiv:1905.05089

Kulkarni SR (2005) Modeling supernova-like explosions associated with gamma-ray bursts with short durations. ArXiv e-prints arXiv:astro-ph/0510256

Kyutoku K, Okawa H, Shibata M, Taniguchi K (2011) Gravitational waves from spinning black hole-neutron star binaries: dependence on black hole spins and on neutron star equations of state. Phys Rev D 84(6):064018. https://doi.org/10.1103/PhysRevD.84.064018. arXiv:1108.1189

Kyutoku K, Ioka K, Shibata M (2013) Anisotropic mass ejection from black hole-neutron star binaries: diversity of electromagnetic counterparts. Phys Rev D 88:041503. https://doi.org/10.1103/PhysRevD.88.041503. arXiv:1305.6309

Kyutoku K, Ioka K, Okawa H, Shibata M, Taniguchi K (2015) Dynamical mass ejection from black hole-neutron star binaries. Phys Rev D 92:044028. https://doi.org/10.1103/PhysRevD.92.044028. arXiv:1502.05402

Lackey BD, Kyutoku K, Shibata M, Brady PR, Friedman JL (2014) Extracting equation of state parameters from black hole-neutron star mergers: aligned-spin black holes and a preliminary waveform model. Phys Rev D 89(4):043009. https://doi.org/10.1103/PhysRevD.89.043009. arXiv:1303.6298

Lamb GP, Kobayashi S (2017) Electromagnetic counterparts to structured jets from gravitational wave detected mergers. Mon Not R Astron Soc 472(4):4953–4964. https://doi.org/10.1093/mnras/stx2345. arXiv:1706.03000

Lattimer JM, Prakash M (2016) The equation of state of hot, dense matter and neutron stars. Phys Rep 621:127–164. https://doi.org/10.1016/j.physrep.2015.12.005. arXiv:1512.07820

Lattimer JM, Schramm DN (1974) Black-hole-neutron-star collisions. Astrophys J Lett 192:L145–L147. https://doi.org/10.1086/181612

Lattimer JM, Schramm DN (1976) The tidal disruption of neutron stars by black holes in close binaries. Astrophys J 210:549–567. https://doi.org/10.1086/154860

Lattimer JM, Schutz BF (2005) Constraining the equation of state with moment of inertia measurements. Astrophys J 629:979–984. https://doi.org/10.1086/431543. arXiv:astro-ph/0411470

Lazzati D, Heger A (2016) The interplay between chemistry and nucleation in the formation of carbonaceous dust in supernova ejecta. Astrophys J 817:134. https://doi.org/10.3847/0004-637X/817/2/134. arXiv:1512.03453

Lazzati D, Deich A, Morsony BJ, Workman JC (2017) Off-axis emission of short $$\gamma $$-ray bursts and the detectability of electromagnetic counterparts of gravitational-wave-detected binary mergers. Mon Not R Astron Soc 471(2):1652–1661. https://doi.org/10.1093/mnras/stx1683. arXiv:1610.01157

Lazzati D, Perna R, Morsony BJ, Lopez-Camara D, Cantiello M, Ciolfi R, Giacomazzo B, Workman JC (2018) Late time afterglow observations reveal a collimated relativistic jet in the ejecta of the binary neutron star merger GW170817. Phys Rev Lett 120(24):241103. https://doi.org/10.1103/PhysRevLett.120.241103. arXiv:1712.03237

Lee WH, Ramirez-Ruiz E, López-Cámara D (2009) Phase transitions and he-synthesis-driven winds in neutrino cooled accretion disks: prospects for late flares in short gamma-ray bursts. Astrophys J Lett 699:L93–L96. https://doi.org/10.1088/0004-637X/699/2/L93. arXiv:0904.3752

Lehner L, Liebling SL, Palenzuela C, Caballero OL, O’Connor E, Anderson M, Neilsen D (2016) Unequal mass binary neutron star mergers and multimessenger signals. Class Quantum Grav 33:184002. https://doi.org/10.1088/0264-9381/33/18/184002. arXiv:1603.00501

Levan AJ et al (2017) The environment of the binary neutron star merger GW170817. Astrophys J Lett 848(2):L28. https://doi.org/10.3847/2041-8213/aa905f. arXiv:1710.05444

Li LX, Paczyński B (1998) Transient events from neutron star mergers. Astrophys J Lett 507:L59–L62. https://doi.org/10.1086/311680. arXiv:astro-ph/9807272

Li SZ, Liu LD, Yu YW, Zhang B (2018) What powered the optical transient AT2017gfo associated with GW170817? Astrophys J Lett 861(2):L12. https://doi.org/10.3847/2041-8213/aace61. arXiv:1804.06597

Lightman AP, Zdziarski AA, Rees MJ (1987) Effects of electron-positron pair opacity for spherical accretion onto black holes. Astrophys J Lett 315:L113–L118. https://doi.org/10.1086/184871

Lippuner J, Roberts LF (2015) r-process lanthanide production and heating rates in kilonovae. Astrophys J 815:82. https://doi.org/10.1088/0004-637X/815/2/82. arXiv:1508.03133

Lippuner J, Fernández R, Roberts LF, Foucart F, Kasen D, Metzger BD, Ott CD (2017) Signatures of hypermassive neutron star lifetimes on r-process nucleosynthesis in the disc ejecta from neutron star mergers. Mon Not R Astron Soc 472(1):904–918. https://doi.org/10.1093/mnras/stx1987. arXiv:1703.06216

Lipunov VM, Gorbovskoy E, Kornilov VG, Tyurina N, Balanutsa P, Kuznetsov A, Vlasenko D, Kuvshinov D, Gorbunov I, Buckley DAH, Krylov AV, Podesta R, Lopez C, Podesta F, Levato H, Saffe C, Mallamachi C, Potter S, Budnev NM, Gress O, Ishmuhametova Y, Vladimirov V, Zimnukhov D, Yurkov V, Sergienko Y, Gabovich A, Rebolo R, Serra-Ricart M, Israelyan G, Chazov V, Wang X, Tlatov A, Panchenko MI (2017) MASTER optical detection of the first LIGO/Virgo neutron star binary merger GW170817. Astrophys J Lett 850(1):L1. https://doi.org/10.3847/2041-8213/aa92c0. arXiv:1710.05461

Lyman JD, Lamb GP, Levan AJ, Mandel I, Tanvir NR, Kobayashi S, Gompertz B, Hjorth J, Fruchter AS, Kangas T (2018) The optical afterglow of the short gamma-ray burst associated with GW170817. Nat Astron 2:751–754. https://doi.org/10.1038/s41550-018-0511-3. arXiv:1801.02669

MacFadyen AI, Ramirez-Ruiz E, Zhang W (2005) X-ray flares following short gamma-ray bursts from shock heating of binary stellar companions. ArXiv e-prints arXiv:astro-ph/0510192

Mandhai S, Tanvir N, Lamb G, Levan A, Tsang D (2018) The rate of short-duration gamma-ray bursts in the local universe. Galaxies 6(4):130. https://doi.org/10.3390/galaxies6040130. arXiv:1812.00507

Margalit B, Metzger BD (2017) Constraining the maximum mass of neutron stars from multi-messenger observations of GW170817. Astrophys J Lett 850(2):L19. https://doi.org/10.3847/2041-8213/aa991c. arXiv:1710.05938

Margalit B, Metzger BD (2019) The multi-messenger matrix: the future of neutron star merger constraints on the nuclear equation of state. Astrophys J Lett 880:L15. https://doi.org/10.3847/2041-8213/ab2ae2. arXiv:1904.11995

Margalit B, Metzger BD, Beloborodov AM (2015) Does the collapse of a supramassive neutron star leave a debris disk? Phys Rev Lett 115:171101. https://doi.org/10.1103/PhysRevLett.115.171101. arXiv:1505.01842

Margalit B, Metzger BD, Berger E, Nicholl M, Eftekhari T, Margutti R (2018) Unveiling the engines of fast radio bursts, superluminous supernovae, and gamma-ray bursts. Mon Not R Astron Soc 481(2):2407–2426. https://doi.org/10.1093/mnras/sty2417. arXiv:1806.05690

Margutti R, Berger E, Fong W, Guidorzi C, Alexander KD, Metzger BD, Blanchard PK, Cowperthwaite PS, Chornock R, Eftekhari T (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising X-ray emission from an off-axis jet. Astrophys J 848(2):L20. https://doi.org/10.3847/2041-8213/aa9057. arXiv:1710.05431

Margutti R, Alexander KD, Xie X, Sironi L, Metzger BD, Kathirgamaraju A, Fong W, Blanchard PK, Berger E, MacFadyen A, Giannios D, Guidorzi C, Hajela A, Chornock R, Cowperthwaite PS, Eftekhari T, Nicholl M, Villar VA, Williams PKG, Zrake J (2018) The binary neutron star event LIGO/Virgo GW170817 160 days after merger: synchrotron emission across the electromagnetic spectrum. Astrophys J Lett 856:L18. https://doi.org/10.3847/2041-8213/aab2ad. arXiv:1801.03531

Martin D, Perego A, Arcones A, Thielemann FK, Korobkin O, Rosswog S (2015) Neutrino-driven winds in the aftermath of a neutron star merger: nucleosynthesis and electromagnetic transients. Astrophys J 813:2. https://doi.org/10.1088/0004-637X/813/1/2. arXiv:1506.05048

Martínez-Pinedo G, Fischer T, Lohs A, Huther L (2012) Charged-current weak interaction processes in hot and dense matter and its impact on the spectra of neutrinos emitted from protoneutron star cooling. Phys Rev Lett 109:251104. https://doi.org/10.1103/PhysRevLett.109.251104. arXiv:1205.2793

Mathews GJ, Bazan G, Cowan JJ (1992) Evolution of heavy-element abundances as a constraint on sites for neutron-capture nucleosynthesis. Astrophys J 391:719–735. https://doi.org/10.1086/171383

Matsumoto T (2018) Polarization of the first-hour macronovae. Mon Not R Astron Soc 481(1):1008–1015. https://doi.org/10.1093/mnras/sty2317. arXiv:1807.04766

Matsumoto T, Ioka K, Kisaka S, Nakar E (2018) Is the macronova in GW170817 powered by the central engine? Astrophys J 861(1):55. https://doi.org/10.3847/1538-4357/aac4a8. arXiv:1802.07732

McCully C, Hiramatsu D, Howell DA, Hosseinzadeh G, Arcavi I, Kasen D, Barnes J, Shara MM, Williams TB, Väisänen P, Potter SB, Romero-Colmenero E, Crawford SM, Buckley DAH, Cooke J, Andreoni I, Pritchard TA, Mao J, Gromadzki M, Burke J (2017) The rapid reddening and featureless optical spectra of the optical counterpart of GW170817, AT 2017gfo, during the first four days. Astrophys J Lett 848(2):L32. https://doi.org/10.3847/2041-8213/aa9111. arXiv:1710.05853

Mendoza-Temis JJ, Wu MR, Langanke K, Martínez-Pinedo G, Bauswein A, Janka HT (2015) Nuclear robustness of the $$r$$ process in neutron-star mergers. Phys Rev C 92:055805. https://doi.org/10.1103/PhysRevC.92.055805

Metzger BD (2017a) Kilonovae. Living Rev Relativ 20:3. https://doi.org/10.1007/s41114-017-0006-z. arXiv:1610.09381

Metzger BD (2017b) Welcome to the multi-messenger era! Lessons from a neutron star merger and the landscape ahead. arXiv e-prints arXiv:1710.05931

Metzger BD, Berger E (2012) What is the most promising electromagnetic counterpart of a neutron star binary merger? Astrophys J 746:48. https://doi.org/10.1088/0004-637X/746/1/48. arXiv:1108.6056

Metzger BD, Bower GC (2014) Constraints on long-lived remnants of neutron star binary mergers from late-time radio observations of short duration gamma-ray bursts. Mon Not R Astron Soc 437:1821–1827. https://doi.org/10.1093/mnras/stt2010. arXiv:1310.4506

Metzger BD, Fernández R (2014) Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger. Mon Not R Astron Soc 441:3444–3453. https://doi.org/10.1093/mnras/stu802. arXiv:1402.4803

Metzger BD, Piro AL (2014) Optical and X-ray emission from stable millisecond magnetars formed from the merger of binary neutron stars. Mon Not R Astron Soc 439:3916–3930. https://doi.org/10.1093/mnras/stu247. arXiv:1311.1519

Metzger BD, Thompson TA, Quataert E (2007) Proto-neutron star winds with magnetic fields and rotation. Astrophys J 659:561–579. https://doi.org/10.1086/512059. arXiv:astro-ph/0608682

Metzger BD, Piro AL, Quataert E (2008a) Time-dependent models of accretion discs formed from compact object mergers. Mon Not R Astron Soc 390(2):781–797. https://doi.org/10.1111/j.1365-2966.2008.13789.x. arXiv:0805.4415

Metzger BD, Quataert E, Thompson TA (2008b) Short-duration gamma-ray bursts with extended emission from protomagnetar spin-down. Mon Not R Astron Soc 385:1455–1460. https://doi.org/10.1111/j.1365-2966.2008.12923.x. arXiv:0712.1233

Metzger BD, Thompson TA, Quataert E (2008c) On the conditions for neutron-rich gamma-ray burst outflows. Astrophys J 676:1130–1150. https://doi.org/10.1086/526418. arXiv:0708.3395

Metzger BD, Piro AL, Quataert E (2009) Neutron-rich freeze-out in viscously spreading accretion discs formed from compact object mergers. Mon Not R Astron Soc 396:304–314. https://doi.org/10.1111/j.1365-2966.2008.14380.x. arXiv:0810.2535

Metzger BD, Arcones A, Quataert E, Martínez-Pinedo G (2010a) The effects of r-process heating on fallback accretion in compact object mergers. Mon Not R Astron Soc 402(4):2771–2777. https://doi.org/10.1111/j.1365-2966.2009.16107.x. arXiv:0908.0530

Metzger BD, Martínez-Pinedo G, Darbha S, Quataert E, Arcones A, Kasen D, Thomas R, Nugent P, Panov IV, Zinner NT (2010b) Electromagnetic counterparts of compact object mergers powered by the radioactive decay of $$r$$-process nuclei. Mon Not R Astron Soc 406:2650–2662. https://doi.org/10.1111/j.1365-2966.2010.16864.x. arXiv:1001.5029

Metzger BD, Vurm I, Hascoët R, Beloborodov AM (2014) Ionization break-out from millisecond pulsar wind nebulae: an X-ray probe of the origin of superluminous supernovae. Mon Not R Astron Soc 437:703–720. https://doi.org/10.1093/mnras/stt1922. arXiv:1307.8115

Metzger BD, Bauswein A, Goriely S, Kasen D (2015) Neutron-powered precursors of kilonovae. Mon Not R Astron Soc 446:1115–1120. https://doi.org/10.1093/mnras/stu2225. arXiv:1409.0544

Metzger BD, Thompson TA, Quataert E (2018) A magnetar origin for the kilonova ejecta in GW170817. Astrophys J 856(2):101. https://doi.org/10.3847/1538-4357/aab095. arXiv:1801.04286

Meyer BS (1989) Decompression of initially cold neutron star matter: a mechanism for the $$r$$-process? Astrophys J 343:254–276. https://doi.org/10.1086/167702

Miller JM, Ryan BR, Dolence JC, Burrows A, Fontes CJ, Fryer CL, Korobkin O, Lippuner J, Mumpower MR, Wollaeger RT (2019) Full transport model of GW170817-like disk produces a blue kilonova. Phys Rev D 100:023008. https://doi.org/10.1103/PhysRevD.100.023008. arXiv:1905.07477

Miller MC (2016) Implications of the gravitational wave event GW150914. Gen Relativ Gravit 48:95. https://doi.org/10.1007/s10714-016-2088-4. arXiv:1606.06526

Miller MC (2017) Gravitational waves: a golden binary. Nature 551(7678):36–37. https://doi.org/10.1038/nature24153

Möller P, Nix JR, Myers WD, Swiatecki WJ (1995) Nuclear ground-state masses and deformations. Atomic Data Nucl Data Tables 59:185. https://doi.org/10.1006/adnd.1995.1002. arXiv:nucl-th/9308022

Mooley KP, Deller AT, Gottlieb O, Nakar E, Hallinan G, Bourke S, Frail DA, Horesh A, Corsi A, Hotokezaka K (2018) Superluminal motion of a relativistic jet in the neutron-star merger GW170817. Nature 561(7723):355–359. https://doi.org/10.1038/s41586-018-0486-3. arXiv:1806.09693

Most ER, Papenfort LJ, Tsokaros A, Rezzolla L (2019) Impact of high spins on the ejection of mass in GW170817. Astrophys J 884:40. https://doi.org/10.3847/1538-4357/ab3ebb. arXiv:1904.04220

Mösta P, Richers S, Ott CD, Haas R, Piro AL, Boydstun K, Abdikamalov E, Reisswig C, Schnetter E (2014) Magnetorotational core-collapse supernovae in three dimensions. Astrophys J Lett 785:L29. https://doi.org/10.1088/2041-8205/785/2/L29. arXiv:1403.1230

Mumpower MR, Surman R, McLaughlin GC, Aprahamian A (2016) The impact of individual nuclear properties on $$r$$-process nucleosynthesis. Prog Part Nucl Phys 86:86–126. https://doi.org/10.1016/j.ppnp.2015.09.001. arXiv:1508.07352

Murguia-Berthier A, Ramirez-Ruiz E, Kilpatrick CD, Foley RJ, Kasen D, Lee WH, Piro AL, Coulter DA, Drout MR, Madore BF, Shappee BJ, Pan YC, Prochaska JX, Rest A, Rojas-Bravo C, Siebert MR, Simon JD (2017a) A neutron star binary merger model for GW170817/GRB 170817A/SSS17a. Astrophys J Lett 848(2):L34. https://doi.org/10.3847/2041-8213/aa91b3. arXiv:1710.05453

Murguia-Berthier A, Ramirez-Ruiz E, Montes G, De Colle F, Rezzolla L, Rosswog S, Takami K, Perego A, Lee WH (2017b) The properties of short gamma-ray burst jets triggered by neutron star mergers. Astrophys J Lett 835(2):L34. https://doi.org/10.3847/2041-8213/aa5b9e. arXiv:1609.04828

Nakar E (2007) Short-hard gamma-ray bursts. Phys Rep 442:166–236. https://doi.org/10.1016/j.physrep.2007.02.005. arXiv:astro-ph/0701748

Nakar E, Piran T (2017) The observable signatures of GRB cocoons. Astrophys J 834:28. https://doi.org/10.3847/1538-4357/834/1/28. arXiv:1610.05362

Narayan R, Paczyński B, Piran T (1992) Gamma-ray bursts as the death throes of massive binary stars. Astrophys J Lett 395:L83–L86. https://doi.org/10.1086/186493. arXiv:astro-ph/9204001

Nedora V, Bernuzzi S, Radice D, Perego A, Endrizzi A, Ortiz N (2019) Spiral-wave wind for the blue kilonova. arXiv e-prints arXiv:1907.04872

Nicholl M et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. III. Optical and UV spectra of a blue kilonova from fast polar ejecta. Astrophys J Lett 848:L18. https://doi.org/10.3847/2041-8213/aa9029. arXiv:1710.05456

Nishimura N, Takiwaki T, Thielemann FK (2015) The r-process nucleosynthesis in the various jet-like explosions of magnetorotational core-collapse supernovae. Astrophys J 810(2):109. https://doi.org/10.1088/0004-637X/810/2/109. arXiv:1501.06567

Nissanke S, Holz DE, Dalal N, Hughes SA, Sievers JL, Hirata CM (2013) Determining the Hubble constant from gravitational wave observations of merging compact binaries. ArXiv e-prints arXiv:1307.2638

Norris JP, Bonnell JT (2006) Short gamma-ray bursts with extended emission. Astrophys J 643:266–275. https://doi.org/10.1086/502796. arXiv:astro-ph/0601190

Nousek JA et al (2006) Evidence for a canonical gamma-ray burst afterglow light curve in the Swift XRT data. Astrophys J 642:389–400. https://doi.org/10.1086/500724. arXiv:astro-ph/0508332

Oechslin R, Janka HT (2006) Torus formation in neutron star mergers and well-localized short gamma-ray bursts. Mon Not R Astron Soc 368:1489–1499. https://doi.org/10.1111/j.1365-2966.2006.10238.x. arXiv:astro-ph/0507099

Oechslin R, Janka HT, Marek A (2007) Relativistic neutron star merger simulations with non-zero temperature equations of state. I. Variation of binary parameters and equation of state. Astron Astrophys 467:395–409. https://doi.org/10.1051/0004-6361:20066682. arXiv:astro-ph/0611047

Özel F, Freire P (2016) Masses, radii, and the equation of state of neutron stars. Annu Rev Astron Astrophys 54:401–440. https://doi.org/10.1146/annurev-astro-081915-023322. arXiv:1603.02698

Özel F, Psaltis D, Ransom S, Demorest P, Alford M (2010) The massive pulsar PSR J1614–2230: linking quantum chromodynamics, gamma-ray bursts, and gravitational wave astronomy. Astrophys J Lett 724:L199–L202. https://doi.org/10.1088/2041-8205/724/2/L199. arXiv:1010.5790

Paczyński B (1986) Gamma-ray bursters at cosmological distances. Astrophys J Lett 308:L43–L46. https://doi.org/10.1086/184740

Palenzuela C, Lehner L, Ponce M, Liebling SL, Anderson M, Neilsen D, Motl P (2013) Electromagnetic and gravitational outputs from binary-neutron-star coalescence. Phys Rev Lett 111:061105. https://doi.org/10.1103/PhysRevLett.111.061105. arXiv:1301.7074

Pan YC, Kilpatrick CD, Simon JD, Xhakaj E, Boutsia K, Coulter DA, Drout MR, Foley RJ, Kasen D, Morrell N, Murguia-Berthier A, Osip D, Piro AL, Prochaska JX, Ramirez-Ruiz E, Rest A, Rojas-Bravo C, Shappee BJ, Siebert MR (2017) The old host-galaxy environment of SSS17a, the first electromagnetic counterpart to a gravitational-wave source. Astrophys J Lett 848(2):L30. https://doi.org/10.3847/2041-8213/aa9116. arXiv:1710.05439

Pannarale F (2013) Black hole remnant of black hole-neutron star coalescing binaries. Phys Rev D 88(10):104025. https://doi.org/10.1103/PhysRevD.88.104025. arXiv:1208.5869

Pannarale F, Berti E, Kyutoku K, Lackey BD, Shibata M (2015) Gravitational-wave cutoff frequencies of tidally disruptive neutron star-black hole binary mergers. Phys Rev D 92:081504. https://doi.org/10.1103/PhysRevD.92.081504. arXiv:1509.06209

Perego A, Rosswog S, Cabezón RM, Korobkin O, Käppeli R, Arcones A, Liebendörfer M (2014) Neutrino-driven winds from neutron star merger remnants. Mon Not R Astron Soc 443:3134–3156. https://doi.org/10.1093/mnras/stu1352. arXiv:1405.6730

Perego A, Radice D, Bernuzzi S (2017) AT 2017gfo: an anisotropic and three-component kilonova counterpart of GW170817. Astrophys J Lett 850(2):L37. https://doi.org/10.3847/2041-8213/aa9ab9. arXiv:1711.03982

Perley DA et al (2009) GRB 080503: implications of a naked short gamma-ray burst dominated by extended emission. Astrophys J 696:1871–1885. https://doi.org/10.1088/0004-637X/696/2/1871. arXiv:0811.1044

Perna R, Sari R, Frail D (2003) Jets in gamma-ray bursts: tests and predictions for the structured jet model. Astrophys J 594:379–384. https://doi.org/10.1086/376772. arXiv:astro-ph/0305145

Philippov AA, Spitkovsky A, Cerutti B (2015) Ab initio pulsar magnetosphere: three-dimensional particle-in-cell simulations of oblique pulsars. Astrophys J Lett 801:L19. https://doi.org/10.1088/2041-8205/801/1/L19. arXiv:1412.0673

Phinney ES (1991) The rate of neutron star binary mergers in the universe: minimal predictions for gravity wave detectors. Astrophys J 380:L17. https://doi.org/10.1086/186163

Pian E et al (2017) Spectroscopic identification of r-process nucleosynthesis in a double neutron-star merger. Nature 551(7678):67–70. https://doi.org/10.1038/nature24298. arXiv:1710.05858

Pinto PA, Eastman RG (2000) The physics of type ia supernova light curves. II. Opacity and diffusion. Astrophys J 530:757–776. https://doi.org/10.1086/308380

Piran T, Nakar E, Rosswog S (2013) The electromagnetic signals of compact binary mergers. Mon Not R Astron Soc 430:2121–2136. https://doi.org/10.1093/mnras/stt037. arXiv:1204.6242

Piro AL, Kollmeier JA (2018) Evidence for cocoon emission from the early light curve of SSS17a. Astrophys J 855(2):103. https://doi.org/10.3847/1538-4357/aaaab3. arXiv:1710.05822

Piro L, Troja E, Zhang B, Ryan G, van Eerten H, Ricci R, Wieringa MH, Tiengo A, Butler NR, Cenko SB, Fox OD, Khandrika HG, Novara G, Rossi A, Sakamoto T (2019) A long-lived neutron star merger remnant in GW170817: constraints and clues from X-ray observations. Mon Not R Astron Soc 483(2):1912–1921. https://doi.org/10.1093/mnras/sty3047. arXiv:1810.04664

Podsiadlowski P, Mazzali PA, Nomoto K, Lazzati D, Cappellaro E (2004) The rates of hypernovae and gamma-ray bursts: implications for their progenitors. Astrophys J Lett 607:L17–L20. https://doi.org/10.1086/421347. arXiv:astro-ph/0403399

Pooley D, Kumar P, Wheeler JC, Grossan B (2018) GW170817 most likely made a black hole. Astrophys J Lett 859(2):L23. https://doi.org/10.3847/2041-8213/aac3d6. arXiv:1712.03240

Popham R, Woosley SE, Fryer C (1999) Hyperaccreting black holes and gamma-ray bursts. Astrophys J 518:356–374. https://doi.org/10.1086/307259. arXiv:astro-ph/9807028

Price DJ, Rosswog S (2006) Producing ultrastrong magnetic fields in neutron star mergers. Science 312:719–722. https://doi.org/10.1126/science.1125201. arXiv:astro-ph/0603845

Pruet J, Thompson TA, Hoffman RD (2004) Nucleosynthesis in outflows from the inner regions of collapsars. Astrophys J 606(2):1006–1018. https://doi.org/10.1086/382036. arXiv:astro-ph/0309278

Punturo M et al (2010) The Einstein Telescope: a third-generation gravitational wave observatory. Class Quantum Grav 27(19):194002. https://doi.org/10.1088/0264-9381/27/19/194002

Qian Y, Woosley SE (1996) Nucleosynthesis in neutrino-driven winds. I. The physical conditions. Astrophys J 471:331. https://doi.org/10.1086/177973. arXiv:astro-ph/9611094

Qian YZ (2000) Supernovae versus neutron star mergers as the major $$r$$-process sources. Astrophys J Lett 534:L67–L70. https://doi.org/10.1086/312659. arXiv:astro-ph/0003242

Qian YZ, Wasserburg GJ (2007) Where, oh where has the $$r$$-process gone? Phys Rep 442:237–268. https://doi.org/10.1016/j.physrep.2007.02.006. arXiv:0708.1767

Radice D, Galeazzi F, Lippuner J, Roberts LF, Ott CD, Rezzolla L (2016a) Dynamical mass ejection from binary neutron star mergers. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stw1227. arXiv:1601.02426

Radice D, Galeazzi F, Lippuner J, Roberts LF, Ott CD, Rezzolla L (2016b) Dynamical mass ejection from binary neutron star mergers. Mon Not R Astron Soc 460(3):3255–3271. https://doi.org/10.1093/mnras/stw1227. arXiv:1601.02426

Radice D, Perego A, Bernuzzi S, Zhang B (2018a) Long-lived remnants from binary neutron star mergers. Mon Not R Astron Soc 481(3):3670–3682. https://doi.org/10.1093/mnras/sty2531. arXiv:1803.10865

Radice D, Perego A, Hotokezaka K, Bernuzzi S, Fromm SA, Roberts LF (2018b) Viscous-dynamical ejecta from binary neutron star mergers. Astrophys J Lett 869(2):L35. https://doi.org/10.3847/2041-8213/aaf053. arXiv:1809.11163

Radice D, Perego A, Zappa F, Bernuzzi S (2018c) GW170817: joint constraint on the neutron star equation of state from multimessenger observations. Astrophys J Lett 852(2):L29. https://doi.org/10.3847/2041-8213/aaa402. arXiv:1711.03647

Raithel CA (2019) Constraints on the neutron star equation of state from GW170817. Eur Phys J A 55(5):80. https://doi.org/10.1140/epja/i2019-12759-5. arXiv:1904.10002

Raithel CA, Özel F, Psaltis D (2018) Tidal deformability from GW170817 as a direct probe of the neutron star radius. Astrophys J Lett 857(2):L23. https://doi.org/10.3847/2041-8213/aabcbf. arXiv:1803.07687

Ramirez-Ruiz E, Trenti M, MacLeod M, Roberts LF, Lee WH, Saladino-Rosas MI (2015) Compact stellar binary assembly in the first nuclear star clusters and $$r$$-process synthesis in the early universe. Astrophys J Lett 802:L22. https://doi.org/10.1088/2041-8205/802/2/L22. arXiv:1410.3467

Rana J, Singhal A, Gadre B, Bhalerao V, Bose S (2017) An optimal method for scheduling observations of large sky error regions for finding optical counterparts to transients. Astrophys J 838:108. https://doi.org/10.3847/1538-4357/838/2/108. arXiv:1603.01689

Reitze D, Adhikari RX, Ballmer S, Barish B, Barsotti L, Billingsley G, Brown DA, Chen Y, Coyne D, Eisenstein R, Evans M, Fritschel P, Hall ED, Lazzarini A, Lovelace G, Read J, Sathyaprakash BS, Shoemaker D, Smith J, Torrie C, Vitale S, Weiss R, Wipf C, Zucker M (2019a) Cosmic explorer: the U.S. contribution to gravitational-wave astronomy beyond LIGO. arXiv e-prints arXiv:1907.04833

Reitze D, LIGO Laboratory: California Institute of Technology, LIGO Laboratory: Massachusetts Institute of Technology, LIGO Hanford Observatory, LIGO Livingston Observatory (2019b) The US program in ground-based gravitational wave science: contribution from the LIGO laboratory. Bull Am Astron Soc 51(3):141. arXiv:1903.04615

Rezzolla L, Most ER, Weih LR (2018) Using gravitational-wave observations and quasi-universal relations to constrain the maximum mass of neutron stars. Astrophys J Lett 852(2):L25. https://doi.org/10.3847/2041-8213/aaa401. arXiv:1711.00314

Richers S, Kasen D, O’Connor E, Fernández R, Ott CD (2015) Monte Carlo neutrino transport through remnant disks from neutron star mergers. Astrophys J 813:38. https://doi.org/10.1088/0004-637X/813/1/38. arXiv:1507.03606

Roberts LF, Woosley SE, Hoffman RD (2010) Integrated nucleosynthesis in neutrino-driven winds. Astrophys J 722:954–967. https://doi.org/10.1088/0004-637X/722/1/954. arXiv:1004.4916

Roberts LF, Kasen D, Lee WH, Ramirez-Ruiz E (2011) Electromagnetic transients powered by nuclear decay in the tidal tails of coalescing compact binaries. Astrophys J Lett 736:L21. https://doi.org/10.1088/2041-8205/736/1/L21. arXiv:1104.5504

Roberts LF, Reddy S, Shen G (2012) Medium modification of the charged-current neutrino opacity and its implications. Phys Rev C 86:065803. https://doi.org/10.1103/PhysRevC.86.065803. arXiv:1205.4066

Rodriguez CL, Farr B, Raymond V, Farr WM, Littenberg TB, Fazi D, Kalogera V (2014) Basic parameter estimation of binary neutron star systems by the advanced LIGO/Virgo network. Astrophys J 784:119. https://doi.org/10.1088/0004-637X/784/2/119. arXiv:1309.3273

Roederer IU (2011) Primordial r-process dispersion in metal-poor globular clusters. Astrophys J Lett 732(1):L17. https://doi.org/10.1088/2041-8205/732/1/L17. arXiv:1104.5056

Romani RW, Filippenko AV, Cenko SB (2015) A spectroscopic study of the extreme black widow PSR J1311–3430. Astrophys J 804(2):115. https://doi.org/10.1088/0004-637X/804/2/115. arXiv:1503.05247

Rossi EM, Begelman MC (2009) Delayed X-ray emission from fallback in compact-object mergers. Mon Not R Astron Soc 392:1451–1455. https://doi.org/10.1111/j.1365-2966.2008.14139.x. arXiv:0808.1284

Rosswog S (2005) Mergers of neutron star-black hole binaries with small mass ratios: nucleosynthesis, gamma-ray bursts, and electromagnetic transients. Astrophys J 634:1202–1213. https://doi.org/10.1086/497062. arXiv:astro-ph/0508138

Rosswog S (2007) Fallback accretion in the aftermath of a compact binary merger. Mon Not R Astron Soc 376:L48–L51. https://doi.org/10.1111/j.1745-3933.2007.00284.x. arXiv:astro-ph/0611440

Rosswog S (2015) The multi-messenger picture of compact binary mergers. Int J Mod Phys D 24:1530012. https://doi.org/10.1142/S0218271815300128. arXiv:1501.02081

Rosswog S, Liebendörfer M, Thielemann FK, Davies MB, Benz W, Piran T (1999) Mass ejection in neutron star mergers. Astron Astrophys 341:499–526 arXiv:astro-ph/9811367

Rosswog S, Piran T, Nakar E (2013) The multimessenger picture of compact object encounters: binary mergers versus dynamical collisions. Mon Not R Astron Soc 430:2585–2604. https://doi.org/10.1093/mnras/sts708. arXiv:1204.6240

Rosswog S, Korobkin O, Arcones A, Thielemann FK, Piran T (2014) The long-term evolution of neutron star merger remnants—I. The impact of $$r$$-process nucleosynthesis. Mon Not R Astron Soc 439:744–756. https://doi.org/10.1093/mnras/stt2502. arXiv:1307.2939

Rosswog S, Sollerman J, Feindt U, Goobar A, Korobkin O, Wollaeger R, Fremling C, Kasliwal MM (2018) The first direct double neutron star merger detection: implications for cosmic nucleosynthesis. Astron Astrophys 615:A132. https://doi.org/10.1051/0004-6361/201732117. arXiv:1710.05445

Rowlinson A, et al (2010) The unusual X-ray emission of the short Swift GRB 090515: evidence for the formation of a magnetar? Mon Not R Astron Soc 1479. https://doi.org/10.1111/j.1365-2966.2010.17354.x. arXiv:1007.2185

Ruiz M, Shapiro SL, Tsokaros A (2018) GW170817, general relativistic magnetohydrodynamic simulations, and the neutron star maximum mass. Phys Rev D 97(2):021501. https://doi.org/10.1103/PhysRevD.97.021501. arXiv:1711.00473

Ryan G, van Eerten H, MacFadyen A, Zhang BB (2015) Gamma-ray bursts are observed off-axis. Astrophys J 799(1):3. https://doi.org/10.1088/0004-637X/799/1/3. arXiv:1405.5516

Safarzadeh M, Sarmento R, Scannapieco E (2019) On neutron star mergers as the source of r-process-enhanced metal-poor stars in the milky way. Astrophys J 876(1):28. https://doi.org/10.3847/1538-4357/ab1341. arXiv:1812.02779

Salafia OS, Ghisellini G, Ghirlanda G (2018) Jet-driven and jet-less fireballs from compact binary mergers. Mon Not R Astron Soc 474(1):L7–L11. https://doi.org/10.1093/mnrasl/slx189. arXiv:1710.05859

Savchenko V et al (2017) INTEGRAL detection of the first prompt gamma-ray signal coincident with the gravitational-wave event GW170817. Astrophys J Lett 848:L15. https://doi.org/10.3847/2041-8213/aa8f94. arXiv:1710.05449

Schutz BF (1986) Determining the Hubble constant from gravitational wave observations. Nature 323(6086):310–311. https://doi.org/10.1038/323310a0

Sekiguchi Y, Kiuchi K, Kyutoku K, Shibata M (2015) Dynamical mass ejection from binary neutron star mergers: radiation-hydrodynamics study in general relativity. Phys Rev D 91:064059. https://doi.org/10.1103/PhysRevD.91.064059. arXiv:1502.06660

Sekiguchi Y, Kiuchi K, Kyutoku K, Shibata M, Taniguchi K (2016) Dynamical mass ejection from the merger of asymmetric binary neutron stars: radiation-hydrodynamics study in general relativity. Phys Rev D 93(12):124046. https://doi.org/10.1103/PhysRevD.93.124046. arXiv:1603.01918

Shappee BJ et al (2017) Early spectra of the gravitational wave source GW170817: evolution of a neutron star merger. Science 358(6370):1574–1578. https://doi.org/10.1126/science.aaq0186. arXiv:1710.05432

Shen S, Cooke RJ, Ramirez-Ruiz E, Madau P, Mayer L, Guedes J (2015) The history of $$r$$-process enrichment in the milky way. Astrophys J 807:115. https://doi.org/10.1088/0004-637X/807/2/115. arXiv:1407.3796

Shibata M (2003) Collapse of rotating supramassive neutron stars to black holes: fully general relativistic simulations. Astrophys J 595:992–999. https://doi.org/10.1086/377435. arXiv:astro-ph/0310020

Shibata M, Hotokezaka K (2019) Merger and mass ejection of neutron star binaries. Annu Rev Nucl Part Sci 69(1):annurev. https://doi.org/10.1146/annurev-nucl-101918-023625. arXiv:1908.02350

Shibata M, Taniguchi K (2006) Merger of binary neutron stars to a black hole: disk mass, short gamma-ray bursts, and quasinormal mode ringing. Phys Rev D 73:064027. https://doi.org/10.1103/PhysRevD.73.064027. arXiv:astro-ph/0603145

Shibata M, Uryū K (2000) Simulation of merging binary neutron stars in full general relativity: $$\Gamma =2$$ case. Phys Rev D 61:064001. https://doi.org/10.1103/PhysRevD.61.064001. arXiv:gr-qc/9911058

Shibata M, Baumgarte TW, Shapiro SL (2000) The bar-mode instability in differentially rotating neutron stars: simulations in full general relativity. Astrophys J 542:453–463. https://doi.org/10.1086/309525. arXiv:astro-ph/0005378

Shibata M, Fujibayashi S, Hotokezaka K, Kiuchi K, Kyutoku K, Sekiguchi Y, Tanaka M (2017) Modeling GW170817 based on numerical relativity and its implications. Phys Rev D 96(12):123012. https://doi.org/10.1103/PhysRevD.96.123012. arXiv:1710.07579

Shibata M, Zhou E, Kiuchi K, Fujibayashi S (2019) Constraint on the maximum mass of neutron stars using GW170817 event. Phys Rev D 100:023015. https://doi.org/10.1103/PhysRevD.100.023015. arXiv:1905.03656

Siegel DM (2019) GW170817—the first observed neutron star merger and its kilonova: implications for the astrophysical site of the r-process. Eur Phys J A 55:203. https://doi.org/10.1140/epja/i2019-12888-9. arXiv:1901.09044

Siegel DM, Ciolfi R (2016a) Electromagnetic emission from long-lived binary neutron star merger remnants. I. Formulation of the problem. Astrophys J 819:14. https://doi.org/10.3847/0004-637X/819/1/14. arXiv:1508.07911

Siegel DM, Ciolfi R (2016b) Electromagnetic emission from long-lived binary neutron star merger remnants. II. Lightcurves and spectra. Astrophys J 819:15. https://doi.org/10.3847/0004-637X/819/1/15. arXiv:1508.07939

Siegel DM, Metzger BD (2017) Three-dimensional general-relativistic magnetohydrodynamic simulations of remnant accretion disks from neutron star mergers: outflows and r -process nucleosynthesis. Phys Rev Lett 119(23):231102. https://doi.org/10.1103/PhysRevLett.119.231102. arXiv:1705.05473

Siegel DM, Metzger BD (2018) Three-dimensional GRMHD simulations of neutrino-cooled accretion disks from neutron star mergers. Astrophys J 858(1):52. https://doi.org/10.3847/1538-4357/aabaec. arXiv:1711.00868

Siegel DM, Ciolfi R, Harte AI, Rezzolla L (2013) Magnetorotational instability in relativistic hypermassive neutron stars. Phys Rev D 87:121302. https://doi.org/10.1103/PhysRevD.87.121302. arXiv:1302.4368

Siegel DM, Ciolfi R, Rezzolla L (2014) Magnetically driven winds from differentially rotating neutron stars and X-ray afterglows of short gamma-ray bursts. Astrophys J Lett 785:L6. https://doi.org/10.1088/2041-8205/785/1/L6. arXiv:1401.4544

Siegel DM, Barnes J, Metzger BD (2019) Collapsars as a major source of r-process elements. Nature 569(7755):241–244. https://doi.org/10.1038/s41586-019-1136-0. arXiv:1810.00098

Skidmore W, TMT International Science Development Teams, Science Advisory Committee T (2015) Thirty meter telescope detailed science case: 2015. Res Astron Astrophys 15:1945. https://doi.org/10.1088/1674-4527/15/12/001. arXiv:1505.01195

Smartt SJ et al (2017) A kilonova as the electromagnetic counterpart to a gravitational-wave source. Nature 551:75–79. https://doi.org/10.1038/nature24303. arXiv:1710.05841

Sneden C, Cowan JJ, Gallino R (2008) Neutron-capture elements in the early galaxy. Annu Rev Astron Astrophys 46:241–288. https://doi.org/10.1146/annurev.astro.46.060407.145207

Soares-Santos M et al (2017) The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys J Lett 848(2):L16. https://doi.org/10.3847/2041-8213/aa9059. arXiv:1710.05459

Somiya K (2012) Detector configuration of KAGRA—the Japanese cryogenic gravitational-wave detector. Class Quantum Grav 29:124007. https://doi.org/10.1088/0264-9381/29/12/124007. arXiv:1111.7185

Surman R, McLaughlin GC, Ruffert M, Janka HT, Hix WR (2008) $$r$$-process nucleosynthesis in hot accretion disk flows from black hole-neutron star mergers. Astrophys J Lett 679:L117–L120. https://doi.org/10.1086/589507. arXiv:0803.1785

Suzuki A, Maeda K (2017) Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae. Mon Not R Astron Soc 466(3):2633–2657. https://doi.org/10.1093/mnras/stw3259. arXiv:1612.03911

Svensson R (1987) Non-thermal pair production in compact X-ray sources: first-order compton cascades in soft radiation fields. Mon Not R Astron Soc 227:403–451. https://doi.org/10.1093/mnras/227.2.403

Symbalisty E, Schramm DN (1982) Neutron star collisions and the r-process. Astrophys J Lett 22:143–145

Takahashi K, Witti J, Janka HT (1994) Nucleosynthesis in neutrino-driven winds from protoneutron stars II. The $$r$$-process. Astron Astrophys 286:857–869

Takami H, Nozawa T, Ioka K (2014) Dust formation in macronovae. Astrophys J Lett 789:L6. https://doi.org/10.1088/2041-8205/789/1/L6. arXiv:1403.5872

Tamborra I, Raffelt GG, Hüdepohl L, Janka HT (2012) Impact of eV-mass sterile neutrinos on neutrino-driven supernova outflows. J Cosmol Astropart Phys 1:013. https://doi.org/10.1088/1475-7516/2012/01/013. arXiv:1110.2104

Tanaka M (2016) Kilonova/macronova emission from compact binary mergers. Adv Astron 2016:634197. https://doi.org/10.1155/2016/6341974. arXiv:1605.07235

Tanaka M, Hotokezaka K (2013) Radiative transfer simulations of neutron star merger ejecta. Astrophys J 775:113. https://doi.org/10.1088/0004-637X/775/2/113. arXiv:1306.3742

Tanaka M, Hotokezaka K, Kyutoku K, Wanajo S, Kiuchi K, Sekiguchi Y, Shibata M (2014) Radioactively powered emission from black hole-neutron star mergers. Astrophys J 780:31. https://doi.org/10.1088/0004-637X/780/1/31. arXiv:1310.2774

Tanaka M, Kato D, Gaigalas G, Kawaguchi K (2019) Systematic opacity calculations for kilonovae. arXiv e-prints arXiv:1906.08914

Tanaka M et al (2017) Kilonova from post-merger ejecta as an optical and near-Infrared counterpart of GW170817. Publ Astron Soc Japan 69(6):102. https://doi.org/10.1093/pasj/psx121. arXiv:1710.05850

Tanvir NR, Levan AJ, Fruchter AS, Hjorth J, Hounsell RA, Wiersema K, Tunnicliffe RL (2013) A ‘kilonova’ associated with the short-duration $$\gamma $$-ray burst GRB130603B. Nature 500:547–549. https://doi.org/10.1038/nature12505. arXiv:1306.4971

Tanvir NR et al (2017) The emergence of a lanthanide-rich kilonova following the merger of two neutron stars. Astrophys J Lett 848(2):L27. https://doi.org/10.3847/2041-8213/aa90b6. arXiv:1710.05455

Tchekhovskoy A, Narayan R, McKinney JC (2011) Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon Not R Astron Soc 418:L79–L83. https://doi.org/10.1111/j.1745-3933.2011.01147.x. arXiv:1108.0412

Thielemann FK, Arcones A, Käppeli R, Liebendörfer M, Rauscher T, Winteler C, Fröhlich C, Dillmann I, Fischer T, Martinez-Pinedo G, Langanke K, Farouqi K, Kratz KL, Panov I, Korneev IK (2011) What are the astrophysical sites for the $$r$$-process and the production of heavy elements? Prog Part Nucl Phys 66:346–353. https://doi.org/10.1016/j.ppnp.2011.01.032

Thompson C, Duncan RC (1993) Neutron star dynamos and the origins of pulsar magnetism. Astrophys J 408:194. https://doi.org/10.1086/172580

Thompson TA (2003) Magnetic protoneutron star winds and $$r$$-process nucleosynthesis. Astrophys J Lett 585:L33–L36. https://doi.org/10.1086/374261. arXiv:astro-ph/0302132

Thompson TA, Burrows A, Meyer BS (2001) The physics of proto-neutron star winds: implications for $$r$$-process nucleosynthesis. Astrophys J 562:887–908. https://doi.org/10.1086/323861. arXiv:astro-ph/0105004

Thompson TA, Chang P, Quataert E (2004) Magnetar spin-down, hyperenergetic supernovae, and gamma-ray bursts. Astrophys J 611:380–393. https://doi.org/10.1086/421969. arXiv:astro-ph/0401555

Totani T, Panaitescu A (2002) Orphan afterglows of collimated gamma-ray bursts: rate predictions and prospects for detection. Astrophys J 576:120–134. https://doi.org/10.1086/341738. arXiv:astro-ph/0204258

Troja E, Piro L, van Eerten H, Wollaeger RT, Im M, Fox OD, Butler NR, Cenko SB, Sakamoto T, Fryer CL (2017) The X-ray counterpart to the gravitational-wave event GW170817. Nature 551(7678):71–74. https://doi.org/10.1038/nature24290. arXiv:1710.05433

Troja E et al (2016) An achromatic break in the afterglow of the short GRB 140903A: evidence for a narrow jet. Astrophys J 827:102. https://doi.org/10.3847/0004-637X/827/2/102. arXiv:1605.03573

Tsang D (2013) Shattering flares during close encounters of neutron stars. Astrophys J 777:103. https://doi.org/10.1088/0004-637X/777/2/103. arXiv:1307.3554

Utsumi Y et al (2017) J-GEM observations of an electromagnetic counterpart to the neutron star merger GW170817. Publ Astron Soc Japan 69(6):101. https://doi.org/10.1093/pasj/psx118. arXiv:1710.05848

Valenti S, Sand DJ, Yang S, Cappellaro E, Tartaglia L, Corsi A, Jha SW, Reichart DE, Haislip J, Kouprianov V (2017) The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck. Astrophys J Lett 848(2):L24. https://doi.org/10.3847/2041-8213/aa8edf. arXiv:1710.05854

van de Voort F, Quataert E, Hopkins PF, Kereš D, Faucher-Giguère CA (2015) Galactic $$r$$-process enrichment by neutron star mergers in cosmological simulations of a Milky Way-mass galaxy. Mon Not R Astron Soc 447:140–148. https://doi.org/10.1093/mnras/stu2404. arXiv:1407.7039

van de Voort F, Pakmor R, Grand RJJ, Springel V, Gómez FA, Marinacci F (2019) Neutron star mergers and rare core-collapse supernovae as sources of r-process enrichment in simulated galaxies. arXiv e-prints arXiv:1907.01557

Vangioni E, Goriely S, Daigne F, François P, Belczynski K (2016) Cosmic neutron-star merger rate and gravitational waves constrained by the $$r$$-process nucleosynthesis. Mon Not R Astron Soc 455:17–34. https://doi.org/10.1093/mnras/stv2296. arXiv:1501.01115

Verner DA, Ferland GJ, Korista KT, Yakovlev DG (1996) Atomic data for astrophysics. II. New analytic FITS for photoionization cross sections of atoms and ions. Astrophys J 465:487. https://doi.org/10.1086/177435. arXiv:astro-ph/9601009

Villar VA, Guillochon J, Berger E, Metzger BD, Cowperthwaite PS, Nicholl M, Alexander KD, Blanchard PK, Chornock R, Eftekhari T (2017) The combined ultraviolet, optical, and near-infrared light curves of the kilonova associated with the binary neutron star merger GW170817: unified data set, analytic models, and physical implications. Astrophys J Lett 851(1):L21. https://doi.org/10.3847/2041-8213/aa9c84. arXiv:1710.11576

Villar VA, Cowperthwaite PS, Berger E, Blanchard PK, Gomez S, Alexander KD, Margutti R, Chornock R, Eftekhari T, Fazio GG, Guillochon J, Hora JL, Nicholl M, Williams PKG (2018) Spitzer space telescope infrared observations of the binary neutron star merger GW170817. Astrophys J Lett 862(1):L11. https://doi.org/10.3847/2041-8213/aad281. arXiv:1805.08192

Vlasov AD, Metzger BD, Thompson TA (2014) Neutrino-heated winds from rotating protomagnetars. Mon Not R Astron Soc 444:3537–3558. https://doi.org/10.1093/mnras/stu1667. arXiv:1405.7043

Wallner A, Faestermann T, Feige J, Feldstein C, Knie K, Korschinek G, Kutschera W, Ofan A, Paul M, Quinto F, Rugel G, Steier P (2015) Abundance of live $$^{244}$$Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis. Nature Commun 6:5956. https://doi.org/10.1038/ncomms6956. arXiv:1509.08054

Wanajo S (2018) Physical conditions for the r-process. I. Radioactive energy sources of kilonovae. Astrophys J 868(1):65. https://doi.org/10.3847/1538-4357/aae0f2. arXiv:1808.03763

Wanajo S, Sekiguchi Y, Nishimura N, Kiuchi K, Kyutoku K, Shibata M (2014) Production of all the $$r$$-process nuclides in the dynamical ejecta of neutron star mergers. Astrophys J 789:L39. https://doi.org/10.1088/2041-8205/789/2/L39. arXiv:1402.7317

Wanderman D, Piran T (2015) The rate, luminosity function and time delay of non-Collapsar short GRBs. Mon Not R Astron Soc 448(4):3026–3037. https://doi.org/10.1093/mnras/stv123. arXiv:1405.5878

Wang LJ, Dai ZG, Liu LD, Wu XF (2016) Probing the birth of post-merger millisecond magnetars with X-ray and gamma-ray emission. Astrophys J 823:15. https://doi.org/10.3847/0004-637X/823/1/15. arXiv:1603.08208

Watson D, Hansen CJ, Selsing J, Koch A, Malesani DB, Andersen AC, Fynbo JPU, Arcones A, Bauswein A, Covino S, Grado A, Heintz KE, Hunt L, Kouveliotou C, Leloudas G, Levan AJ, Mazzali P, Pian E (2019) Identification of strontium in the merger of two neutron stars. Nature 574(7779):497–500. https://doi.org/10.1038/s41586-019-1676-3

Waxman E, Ofek EO, Kushnir D, Gal-Yam A (2018) Constraints on the ejecta of the GW170817 neutron star merger from its electromagnetic emission. Mon Not R Astron Soc 481(3):3423–3441. https://doi.org/10.1093/mnras/sty2441. arXiv:1711.09638

Waxman E, Ofek EO, Kushnir D (2019) Late-time kilonova light curves and implications to GW170817. Astrophys J 878(2):93. https://doi.org/10.3847/1538-4357/ab1f71. arXiv:1902.01197

Way K, Wigner EP (1948) The rate of decay of fission products. Phys Rev 73:1318–1330. https://doi.org/10.1103/PhysRev.73.1318

Winteler C, Käppeli R, Perego A, Arcones A, Vasset N, Nishimura N, Liebendörfer M, Thielemann FK (2012) Magnetorotationally driven supernovae as the origin of early galaxy $$r$$-process elements? Astrophys J Lett 750:L22. https://doi.org/10.1088/2041-8205/750/1/L22. arXiv:1203.0616

Wollaeger RT, Korobkin O, Fontes CJ, Rosswog SK, Even WP, Fryer CL, Sollerman J, Hungerford AL, van Rossum DR, Wollaber AB (2018) Impact of ejecta morphology and composition on the electromagnetic signatures of neutron star mergers. Mon Not R Astron Soc 478(3):3298–3334. https://doi.org/10.1093/mnras/sty1018. arXiv:1705.07084

Wollaeger RT, Fryer CL, Fontes CJ, Lippuner J, Vestrand WT, Mumpower MR, Korobkin O, Hungerford AL, Even WP (2019) Impact of pulsar and fallback sources on multifrequency kilonova models. Astrophys J 880(1):22. https://doi.org/10.3847/1538-4357/ab25f5. arXiv:1904.05934

Woosley SE (2010) Bright supernovae from magnetar birth. Astrophys J Lett 719:L204–L207. https://doi.org/10.1088/2041-8205/719/2/L204. arXiv:0911.0698

Woosley SE, Wilson JR, Mathews GJ, Hoffman RD, Meyer BS (1994) The $$r$$-process and neutrino-heated supernova ejecta. Astrophys J 433:229–246. https://doi.org/10.1086/174638

Wu MR, Fischer T, Huther L, Martínez-Pinedo G, Qian YZ (2014) Impact of active-sterile neutrino mixing on supernova explosion and nucleosynthesis. Phys Rev D 89:061303. https://doi.org/10.1103/PhysRevD.89.061303. arXiv:1305.2382

Wu MR, Fernández R, Martínez-Pinedo G, Metzger BD (2016) Production of the entire range of $$r$$-process nuclides by black hole accretion disk outflows from neutron star mergers. Mon Not R Astron Soc. https://doi.org/10.1093/mnras/stw2156. arXiv:1607.05290

Wu MR, Banerjee P, Metzger BD, Martínez-Pinedo G, Aramaki T, Burns E, Hailey CJ, Barnes J, Karagiorgi G (2019a) Finding the remnants of the Milky Way’s last neutron star mergers. Astrophys J 880(1):23. https://doi.org/10.3847/1538-4357/ab2593

Wu MR, Barnes J, Martínez-Pinedo G, Metzger BD (2019b) Fingerprints of heavy-element nucleosynthesis in the late-time lightcurves of kilonovae. Phys Rev Lett 122(6):062701. https://doi.org/10.1103/PhysRevLett.122.062701. arXiv:1808.10459

Wu Y, MacFadyen A (2019) GW170817 afterglow reveals that short gamma-ray bursts are neutron star mergers. Astrophys J Lett 880:L23. https://doi.org/10.3847/2041-8213/ab2fd4. arXiv:1905.02665

Xiao D, Liu LD, Dai ZG, Wu XF (2017) Afterglows and kilonovae associated with nearby low-luminosity short-duration gamma-ray bursts: application to GW170817/GRB 170817A. Astrophys J Lett 850(2):L41. https://doi.org/10.3847/2041-8213/aa9b2b. arXiv:1710.05910

Xie X, MacFadyen A (2019) Off-axis synchrotron light curves from full-time-domain moving-mesh simulations of jets from massive stars. Astrophys J 880:135. https://doi.org/10.3847/1538-4357/ab2912. arXiv:1905.01266

Yang B, Jin ZP, Li X, Covino S, Zheng XZ, Hotokezaka K, Fan YZ, Piran T, Wei DM (2015) A possible macronova in the late afterglow of the long-short burst GRB 060614. Nature Commun 6:7323. https://doi.org/10.1038/ncomms8323. arXiv:1503.07761

Yu YW (2019) A brief review on kilonovae or mergernovae. Acta Astron Sinica 60(1):6

Yu YW, Zhang B, Gao H (2013) Bright “merger-nova” from the remnant of a neutron star binary merger: a signature of a newly born, massive, millisecond magnetar. Astrophys J Lett 776:L40. https://doi.org/10.1088/2041-8205/776/2/L40. arXiv:1308.0876

Zdziarski AA, Svensson R (1989) Absorption of gamma rays and gamma rays at cosmological redshifts. Astrophys J 344:551. https://doi.org/10.1086/167826

Zevin M, Kremer K, Siegel DM, Coughlin S, Tsang BTH, Berry CPL, Kalogera V (2019) Can neutron-star mergers explain the r-process enrichment in globular clusters? Astrophys J 886:4. https://doi.org/10.3847/1538-4357/ab498b. arXiv:1906.11299

Zhang B (2013) Early X-ray and optical afterglow of gravitational wave bursts from mergers of binary neutron stars. Astrophys J Lett 763:L22. https://doi.org/10.1088/2041-8205/763/1/L22. arXiv:1212.0773

Zhao T, Lattimer JM (2018) Tidal deformabilities and neutron star mergers. Phys Rev D 98(6):063020. https://doi.org/10.1103/PhysRevD.98.063020. arXiv:1808.02858

Zhu Y, Wollaeger RT, Vassh N, Surman R, Sprouse TM, Mumpower MR, Möller P, McLaughlin GC, Korobkin O, Kawano T, Jaffke PJ, Holmbeck EM, Fryer CL, Even WP, Couture AJ, Barnes J (2018) Californium-254 and kilonova light curves. Astrophys J Lett 863(2):L23. https://doi.org/10.3847/2041-8213/aad5de. arXiv:1806.09724

Zrake J, MacFadyen AI (2013) Magnetic energy production by turbulence in binary neutron star mergers. Astrophys J Lett 769:L29. https://doi.org/10.1088/2041-8205/769/2/L29. arXiv:1303.1450