Key physiological traits and chemical properties of extracellular polymeric substances determining colony formation in a cyanobacterium
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bahram M, Bro R, Stedmon C et al. 2006. Handling of Rayleigh and Raman scatter for PARAFAC modeling of fluorescence data using interpolation. Journal of Chemometrics, 20(3–4): 99–105, https://doi.org/10.1002/cem.978.
Bradford M M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1–2): 248–254, https://doi.org/10.1016/0003-2697(76)90527-3.
Chen W, Westerhoff P, Leenheer J A et al. 2003. Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37(24): 5701–5710, https://doi.org/10.1021/es034354c.
Duan Z P, Tan X, Li N G. 2017. Ultrasonic selectivity on depressing photosynthesis of cyanobacteria and green algae probed by chlorophyll-a fluorescence transient. Water Science & Technology, 76(8): 2085–2094, https://doi.org/10.2166/wst.2017.376.
Duan Z P, Tan X, Paerl H W et al. 2021. Ecological stoichiometry of functional traits in a colonial harmful cyanobacterium. Limnology and Oceanography, 66(5): 2051–2062, https://doi.org/10.1002/lno.11744.
Duan Z P, Tan X, Parajuli K et al. 2018. Colony formation in two Microcystis morphotypes: effects of temperature and nutrient availability. Harmful Algae, 72: 14–24, https://doi.org/10.1016/j.hal.2017.12.006.
Duan Z P, Tan X, Parajuli K et al. 2019. Characterization of Microcystis morphotypes: implications for colony formation and intraspecific variation. Harmful Algae, 90: 101701, https://doi.org/10.1016/j.hal.2019.101701.
Duan Z P, Tan X, Zhang D F et al. 2020. Development of thermal treatment for the extraction of extracellular polymeric substances from Microcystis: evaluating extraction efficiency and cell integrity. Algal Research, 48: 101879, https://doi.org/10.1016/j.algal.2020.101879.
Forni C, Telo’ F R, Caiola M G. 1997. Comparative analysis of the polysaccharides produced by different species of Microcystis (Chroococcales, Cyanophyta). Phycologia, 36(3): 181–185, https://doi.org/10.2216/i0031-8884-36-3-181.1.
Gerphagnon M, Macarthur D J, Latour D et al. 2015. Microbial players involved in the decline of filamentous and colonial cyanobacterial blooms with a focus on fungal parasitism. Environmental Microbiology, 17(8): 2573–2587, https://doi.org/10.1111/1462-2920.12860.
Glazer A N. 1984. Phycobilisome a macromolecular complex optimized for light energy transfer. Biochimica et Biophysica Acta (BBA) — Reviews on Bioenergetics, 768(1): 29–51, https://doi.org/10.1016/0304-4173(84)90006-5.
Griffiths P R, de Haseth J A. 2006. Fourier Transform Infrared Spectrometry. 2th ed. John Wiley & Sons, Inc., Hoboken, New Jersey.
Grossman A R, Schaefer M R, Chiang G G et al. 1993. The phycobilisome, a light-harvesting complex responsive to environmental conditions. Microbiological Reviews, 57(3): 725–749.
Harke M J, Steffen M M, Gobler C J et al. 2016. A review of the global ecology, genomics, and biogeography of the toxic cyanobacterium, Microcystis spp. Harmful Algae, 54: 4–20, https://doi.org/10.1016/j.hal.2015.12.007.
Helm R F, Potts M. 2012. Extracellular matrix (ECM). In. Whitton B A ed. Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer, Dordrecht. p.461–480, https://doi.org/10.1007/978-94-007-3855-3_18.
Li M, Zhu W, Gao L et al. 2013. Changes in extracellular polysaccharide content and morphology of Microcystis aeruginosa at different specific growth rates. Journal of Applied Phycology, 25(4): 1023–1030, https://doi.org/10.1007/s10811-012-9937-7.
Li M, Zhu W, Gao L. 2014. Analysis of cell concentration, volume concentration, and colony size of Microcystis via laser particle analyzer. Environmental Management, 53(5): 947–958, https://doi.org/10.1007/s00267-014-0252-8.
Liu L Z, Qin B Q, Zhang Y L et al. 2014. Extraction and characterization of bound extracellular polymeric substances from cultured pure cyanobacterium (Microcystis wesenbergii). Journal of Environmental Sciences, 26(8): 1725–1732, https://doi.org/10.1016/j.jes.2014.06.013.
Murphy K R, Butler K D, Spencer R G M et al. 2010. Measurement of dissolved organic matter fluorescence in aquatic environments: an interlaboratory comparison. Environmental Science & Technology, 44(24): 9405–9412, https://doi.org/10.1021/es102362t.
Murphy K R, Stedmon C A, Wenig P et al. 2014. OpenFluor — an online spectral library of auto-fluorescence by organic compounds in the environment. Analytical Methods, 6(3): 658–661, https://doi.org/10.1039/C3AY41935E.
Myklestad S M. 1995. Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Science of The Total Environment, 165(1–3): 155–164, https://doi.org/10.1016/0048-9697(95)04549-G.
Nakamoto K. 2009. Infrared and Raman Spectra of Inorganic and Coordination Compounds: Part B: Applications in Coordination, Organometallic, and Bioinorganic Chemistry. 6th ed. John Wiley & Sons, Inc., Hoboken. 416p.
Partlow B P, Applegate M B, Omenetto F G et al. 2016. Dityrosine cross-linking in designing biomaterials. ACS Biomaterials Science & Engineering, 2(12): 2108–2121, https://doi.org/10.1021/acsbiomaterials.6b00454.
Pereira S, Zille A, Micheletti E et al. 2009. Complexity of cyanobacterial exopolysaccharides: composition, structures, inducing factors and putative genes involved in their biosynthesis and assembly. FEMS Microbiology Reviews, 33(5): 917–941, https://doi.org/10.1111/j.1574-6976.2009.00183.x.
Shen H, Song L R. 2007. Comparative studies on physiological responses to phosphorus in two phenotypes of bloom-forming Microcystis. Hydrobiologia, 592(1): 475–486.
Sheng G P, Yu H Q, Li X Y. 2010. Extracellular polymeric substances (EPS) of microbial aggregates in biological wastewater treatment systems: a review. Biotechnology Advances, 28(6): 882–894, https://doi.org/10.1016/j.biotechadv.2010.08.001.
Sofia S J, Singh A, Kaplan D L. 2002. Peroxidase-catalyzed crosslinking of functionalized polyaspartic acid polymers. Journal of Macromolecular Science, Part A, 39(10): 1151–1181, https://doi.org/10.1081/MA-120014843.
Stal L J. 2017. Gregarious cyanobacteria. Environmental Microbiology, 19(6): 2105–2109, https://doi.org/10.1111/1462-2920.13739.
Stanier R Y, Kunisawa R, Mandel M et al. 1971. Purification and properties of unicellular blue-green algae (Order Chroococcales). Bacteriological Reviews, 35(2): 171–205, https://doi.org/10.1128/br.35.2.171-205.1971.
Stedmon C A, Bro R. 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods, 6(11): 572–579, https://doi.org/10.4319/lom.2008.6.572.
Stedmon C A, Markager S. 2005. Tracing the production and degradation of autochthonous fractions of dissolved organic matter by fluorescence analysis. Limnology and Oceanography, 50(5): 1415–1426, https://doi.org/10.4319/lo.2005.50.5.1415.
Sukenik A, Kaplan A. 2021. Cyanobacterial harmful algal blooms in aquatic ecosystems: a comprehensive outlook on current and emerging mitigation and control approaches. Microorganisms, 9(7): 1472, https://doi.org/10.3390/microorganisms9071472.
Wang B B, Liu X T, Chen J M et al. 2018. Composition and functional group characterization of extracellular polymeric substances (EPS) in activated sludge: the impacts of polymerization degree of proteinaceous substrates. Water Research, 129: 133–142, https://doi.org/10.1016/j.watres.2017.11.008.
Wilson A E, Kaul R B, Sarnelle O. 2010. Growth rate consequences of coloniality in a harmful phytoplankter. PLoS One, 5(1): e8679, https://doi.org/10.1371/journal.pone.0008679.
Wilson A E, Wilson W A, Hay M E. 2006. Intraspecific variation in growth and morphology of the bloom-forming cyanobacterium Microcystis aeruginosa. Applied and Environmental Microbiology, 72(11): 7386–7389, https://doi.org/10.1128/AEM.00834-06.
Wu Z X, Song L R. 2008. Physiological comparison between colonial and unicellular forms of Microcystis aeruginosa Kütz. (Cyanobacteria). Phycologia, 47(1): 98–104.
Xiao M, Li M, Duan P F et al. 2019. Insights into the relationship between colony formation and extracellular polymeric substances (EPS) composition of the cyanobacterium Microcystis spp. Harmful Algae, 83: 34–41, https://doi.org/10.1016/j.hal.2019.02.006.
Xiao M, Li M, Reynolds C S. 2018. Colony formation in the cyanobacterium Microcystis. Biological Reviews, 93(3): 1399–1420, https://doi.org/10.1111/brv.12401.
Xu F, Zhu W, Xiao M et al. 2016a. Interspecific variation in extracellular polysaccharide content and colony formation of Microcystis spp. cultured under different light intensities and temperatures. Journal of Applied Phycology, 28(3): 1533–1541, https://doi.org/10.1007/s10811-015-0707-1.
Xu H C, Cai H Y, Yu G H et al. 2013a. Insights into extracellular polymeric substances of cyanobacterium Microcystis aeruginosa using fractionation procedure and parallel factor analysis. Water Research, 47(6): 2005–2014, https://doi.org/10.1016/j.watres.2013.01.019.
Xu H C, Jiang H L, Yu G H et al. 2014. Towards understanding the role of extracellular polymeric substances in cyanobacterial Microcystis aggregation and mucilaginous bloom formation. Chemosphere, 117: 815–822, https://doi.org/10.1016/j.chemosphere.2014.10.061.
Xu H C, Lv H, Liu X et al. 2016b. Electrolyte cations binding with extracellular polymeric substances enhanced Microcystis aggregation: implication for Microcystis bloom formation in eutrophic freshwater lakes. Environmental Science & Technology, 50(17): 9034–9043, https://doi.org/10.1021/acs.est.6b00129.
Xu H C, Yan Z S, Cai H Y et al. 2013b. Heterogeneity in metal binding by individual fluorescent components in a eutrophic algae-rich lake. Ecotoxicology and Environmental Safety, 98: 266–272, https://doi.org/10.1016/j.ecoenv.2013.09.008.
Xu H C, Yu G H, Jiang H L. 2013c. Investigation on extracellular polymeric substances from mucilaginous cyanobacterial blooms in eutrophic freshwater lakes. Chemosphere, 93(1): 75–81, https://doi.org/10.1016/j.chemosphere.2013.04.077.
Xu H, Paerl H W, Qin B Q et al. 2010. Nitrogen and phosphorus inputs control phytoplankton growth in eutrophic Lake Taihu, China. Limnology and Oceanography, 55(1): 420–432, https://doi.org/10.4319/lo.2010.55.1.0420.
Xu Y, Lu Y Q, Dai X H et al. 2017. The influence of organic-binding metals on the biogas conversion of sewage sludge. Water Research, 126: 329–341, https://doi.org/10.1016/j.watres.2017.09.046.
Yang Z, Kong F X, Shi X L et al. 2008. Changes in the morphology and polysaccharide content of Microcystis aeruginosa (cyanobacteria) during flagellate grazing. Journal of Phycology, 44(3): 716–720, https://doi.org/10.1111/j.1529-8817.2008.00502.x.
Zhang M, Kong F X, Tan X et al. 2007. Biochemical, morphological, and genetic variations in Microcystis aeruginosa due to colony disaggregation. World Journal of Microbiology and Biotechnology, 23(5): 663–670, https://doi.org/10.1007/s11274-006-9280-8.