Key parameters for spark plasma sintering of wet-precipitated iodate-substituted hydroxyapatite

Journal of the European Ceramic Society - Tập 36 - Trang 2009-2016 - 2016
A. Coulon1, D. Laurencin2, A. Grandjean3, S. Le Gallet4, L. Minier4, S. Rossignol5, L. Campayo1
1CEA, DEN, DTCD, SECM, Laboratoire d’étude et de Développement de Matrices de Conditionnement, Centre de Marcoule, F-30207 Bagnols sur Cèze, France
2Institut Charles Gerhardt Montpellier ICGM, UMR 5253CNRS-UM-ENSCM, Université de Montpellier, Place E. Bataillon, CC1701, F-34095 Montpellier Cedex 5, France
3CEA, DEN, DTCD, SPDE, Laboratoire des Procédés Supercritiques et de Décontamination, Centre de Marcoule, F-30207 Bagnols sur Cèze, France
4Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303CNRS-UBFC, 9 Av. Alain Savary, BP 47870, F-21078 Dijon Cedex, France
5Groupe d'Etude des Matériaux Hétérogènes, CEC-GEMH-ENSCI, 12 rue de l'Atlantis, F-87068 Limoges Cedex, France

Tài liệu tham khảo

Donald, 1997, The immobilization of high level radioactive wastes using ceramics and glasses, J. Mater. Sci., 32, 5851, 10.1023/A:1018646507438 Darab, 1999, Behavior of simulated Hanford slurries during conversion to glass, Mater. Res. Soc. Symp. Proc., 556, 215, 10.1557/PROC-556-215 Strachan, 1979, Iodide and iodate sodalites for the long-term storage of I-129, J. Am. Ceram. Soc. Bull., 58, 327 Guy, 2002, New conditionings for separated long-lived radionuclides, C.R. Phys., 3, 827, 10.1016/S1631-0705(02)01377-4 Krumhansl, 2011, Hydrotalcite-like layered bismuth-iodine-oxides as waste forms, Appl. Geochem., 26, 57, 10.1016/j.apgeochem.2010.11.003 Nenoff, 2014, Silver-mordenite for radiologic gas capture from complex streams: Dual catalytic CH3I decomposition and I confinement, Microporous Mesoporous Mater., 200, 297, 10.1016/j.micromeso.2014.04.041 Audubert, 1997, Elaboration of an iodine-bearing apatite, Iodine diffusion into a Pb3(VO4) 2 matrix, Solid State Ionics, 95, 113, 10.1016/S0167-2738(96)00570-X Maddrell, 2004, A comparison of wasteforms and processes for the immobilization of iodine 129, Mater. Res. Soc. Symp. Proc., 807, 261, 10.1557/PROC-807-261 Campayo, 2009, Spark plasma sintering of lead phosphovanadate (Pb3(VO4) 1, 6(PO4) 0, 4), J. Eur Ceram. Soc., 29, 1477, 10.1016/j.jeurceramsoc.2008.09.003 Le Gallet, 2010, Bart Spark plasma sintering of iodine-bearing apatite, J. Nucl. Mater., 400, 251, 10.1016/j.jnucmat.2010.03.011 Stennett, 2011, Rapid synthesis of Pb-5(VO4)(3)I for the immobilization of iodine radioisotopes, by microwave dielectric heating, J. Nucl. Mater., 414, 352, 10.1016/j.jnucmat.2011.04.041 Lu, 2014, Facile low temperature solid state synthesis of iodoapatite by high-energy ball milling, RSC Adv., 4, 38718, 10.1039/C4RA05320F Suetsugu, 2014, Synthesis of lead vanadate iodoapatite utilizing dry mechanochemical process, J. Nucl. Mater., 454, 223, 10.1016/j.jnucmat.2014.07.073 Yao, 2014, Bulk iodoapatite ceramic densified by spark Plasma Sintering with exceptional thermal stability, J. Am. Ceram. Soc., 97, 2409, 10.1111/jace.13101 Campayo, 2011, Incorporation of iodates into hydroxyapatites: a new approach for the confinement of radioactive iodine, J. Mater. Chem., 21, 17609, 10.1039/c1jm14157k Laurencin, 2014, Investigation of the local environment of iodate in hydroxyapatite by combination of X-ray absorption spectroscopy and DFT modeling, RSC Adv., 4, 14700, 10.1039/C3RA47691J Coulon, 2014, Immobilization of iodine into a hydroxyapatite structure prepared by cementation, J. Mater. Chem. A, 2, 20923, 10.1039/C4TA03236E Campayo, 2015, Relevance of the choice of spark plasma sintering parameters in obtaining a suitable microstructure for iodine-bearing apatite designed for the conditioning of I-129, J. Nucl. Mater., 457, 63, 10.1016/j.jnucmat.2014.10.026 Royer, 1993, Stoichiometry of hydroxyapatite: influence on the flexural strength, J. Mater. Sci.: Mater. Med., 4, 76 Halouani, 1994, Microstructure and related mechanical properties of hot pressed hydroxyapatite ceramics, J. Mater. Sci.: Mater. Med., 5, 563 Raynaud, 2002, Calcium phosphate apatites with variable Ca/P atomic ratio II. Calcination and sintering, Biomaterials, 23, 1073, 10.1016/S0142-9612(01)00219-8 Nakahira, 2003, Preparation and evaluation of dense hydroxyapatite by PECS method, Key Eng. Mat., 240–242, 551, 10.4028/www.scientific.net/KEM.240-242.551 Guo, 2005, Fabrication of nanostructural hydroxyapatite via hydrothermal synthesis and spark plasma sintering, J. Am. Ceram. Soc., 88, 1026, 10.1111/j.1551-2916.2005.00198.x Mazaheri, 2009, Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics, J. Alloy Compd., 471, 180, 10.1016/j.jallcom.2008.03.066 Laasri, 2010, The effect of densification and dehydroxylation on the mechanical properties of stoechiometric hydroxyapatite bioceramic, Mater. Res. Bull., 45, 1433, 10.1016/j.materresbull.2010.06.040 Champion, 2013, Sintering of calcium phosphate bioceramics, Acta Biomater., 9, 5855, 10.1016/j.actbio.2012.11.029 Raynaud, 2001, Determination of calcium/phosphorus atomic ration of calcium phosphate apatite using X-ray diffractometry, J. Am. Ceram. Soc., 84, 359, 10.1111/j.1151-2916.2001.tb00663.x Raynaud, 2002, Calcium phosphate apatites with variable Ca/P atomic ratio I. Synthesis, characterization and thermal stability of powders, Biomaterials, 23, 1065, 10.1016/S0142-9612(01)00218-6 Grossin, 2010, Biomimetic apatite sintering at very low temperature by spark plasma sintering: Physico-chemistry and microstructure aspects, Acta Biomater., 6, 577, 10.1016/j.actbio.2009.08.021 Drouet, 2009, Nanocrystalline apatites: From powders to biomaterials, Powder Technol., 190, 118, 10.1016/j.powtec.2008.04.041 Rey, 1990, Resolution-enhanced Fourier transform infrared spectroscopy study of the environment of phosphate ions in the early deposits of a solid phase of calcium phosphate in bone and enamel and their evolution with age. I: Investigation in the v4 PO4 domain, Calcif. Tissue Int., 46, 384, 10.1007/BF02554969 Cazalbou, 2004, Poorly crystalline apatites: evolution and maturation in vitro and in vivo, J. Bone Miner. Metab., 22, 310, 10.1007/s00774-004-0488-0 Rey, 2007, Physico-chemical properties of nanocrystalline apatites: Implication for biominerals and biomaterial, Mater. Sci. Eng. C, 27, 198, 10.1016/j.msec.2006.05.015 Vandecandelaere, 2012, Biomimetic apatite-based biomaterials: on the critical impact of synthesis and post-synthesis parameters, J. Mater. Sci.: Mater. Med., 23, 2593 Winand, 1961, Etude Physico-chimique du phosphate tricalcique hydrate et de l’hydroxylapatite, Ann. Chim. Fr., 6, 941 Destainville, 2003, Synthesis, characterization and thermal behavior of apatitic tricalcium phosphate, Mater. Chem. Phys., 80, 269, 10.1016/S0254-0584(02)00466-2 Nilen, 2008, The thermal stability of hydroxyapatite in biphasic calcium phosphate ceramics, J. Mater. Sci.: Mater. Med., 19, 1693 Kannan, 2008, Ionic substitutions in biphasic hydroxyapatite and β-tricalcium phosphate mixtures: structural analysis by Rietveld refinement, J. Am. Ceram. Soc., 91, 1, 10.1111/j.1551-2916.2007.02117.x German, 1989, 1