Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Các ước lượng phần trăm Kernel trong mối quan hệ liều - hiệu ứng
Tóm tắt
Các ước lượng phân vị không tham số trong sự phụ thuộc giữa liều và hiệu ứng được xem xét. Kết quả cho thấy rằng những ước lượng này nhất quán và có phân phối chuẩn tiệm cận. Phương sai giới hạn của các ước lượng được xây dựng được cung cấp.
Từ khóa
#ước lượng phân vị #liều #hiệu ứng #thống kê không tham số #phân phối chuẩn tiệm cậnTài liệu tham khảo
Kibzun, A.I. and Matveev, E.L., Optimization of the quantile function on the basis of kernel estimates, Autom. Remote Contr., 2007, vol. 68, pp. 64–74.
Kan, Yu.S. and Kibzun, A.I., Zadachi stokhasticheskogo programmirovaniya s veroyatnostnymi kriteriyami (Problems of Stochastic Programming with Probability Criteria), Moscow: Fizmatlit, 2009.
Holton, G.A., Value-at-Risk. Theory and Pratice Academic, 2003.
Araujo, S.P., Excess, Durations and Forecasting Value-at-Risk Universidade de Lisboa, 2011.
Krishtopenko, S.V., Tikhov, M.S., and Popova, E.B., Doza-effekt (Dose-Effect), Moscow: Meditsina, 2008.
Smirnov, N.V., Limiting laws for terms of variation series, Trudy Matem. Inst., 1949, vol. 25, pp. 5–59.
Falk, M., Asymptotic normality of the kernel quantile estimator, Ann. Statist., 1985, vol. 13, pp. 428–433.
Sun, S., Central limit theorem of the perturbed sample quantile for a sequence of M-dependent nonstationary random process, Teor. Veroyat. Primen., 1995, vol. 40, pp. 143–158.
Lio, Y.L. and Padgett, W.J., Some convergence results for kernel-type quantile estimators under censoring, Statistics Probab. Lett., 1987, vol. 5, pp. 5–14.
Ghorai, J.K., Estimation of a smooth quantile function under the proportional hazards model, Ann. Inst. Statist. Math., 1991, vol. 43, pp. 747–760.
Natanson, I.P., Teoriya funktsii veshchestvennoi peremennoi (Theory of Real Variable Function), Moscow: Nauka, 1974.
Niederreiter, H., Random Number Generation and Quasi-Monte Carlo Methods Philadelphia: Society for Industrial and Applied Mathematics, 1992.
Dette, H., Neumeyer, N., and Pilz, K.F., A note on nonparametric estimation of the effective dose in quantal bioassay, J. Am. Statist. Assoc., 2005, vol. 100, pp. 503–510.
Tikhov, M.S., Estimation of the effective dose in dose-effect dependence over random experiment plans, in Statisticheskie metody otsenivaniya i proverki gipotez: mezhvuz. sb. nauchn. tr. Perm. un-t (Statistical Methods of Hypothesis Estimation and Verification. Coll. Papers Perm. Univ.), Perm, 2012, pp. 84–99.
Tikhov, M. and Borodina, T., A Nonparametric estimator for effective doses in dose-effect dependence over random experiment plans, Proc. 12th Int. Conf. ‘Reliability and Statistics in Transportation and Communication’, Riga, 2012.
Hengatrner, N.W., Asymptotic unbiased density estimators, ESIAM, 2009, vol. 13, no. 4, pp. 1–14.
Gnedenko, B.V., Kurs teorii veroyatnostei (Probability Theory Course), Moscow: URSS, 2005.
Tikhov, M.S. and Krishtopenko, D.S., Estimation of distributions in dose-effect dependence at the fixed plan of experiment, in Statisticheskie metody otsenivaniya i proverki gipotez: mezhvuz. sb. nauchn. tr., Perm. un-t (Statistical Methods of Hypothesis Estimation and Verification. Coll. Papers Perm. Univ.), Perm, 2006, pp. 66–77.
Hardle, W., Applied Nonparametric Regression Bonn: Econometric Society Monographs, 1992.
Hardle, W., Muller, M., Sperlich, S., and Werwatz, A., Nonparametric and Semiparametric Models Berlin: Springer-Verlag, 2004.
Li, Q. and Racine, J.S., Nonparametric Econometrics: Theory and Practice New York: Princeton University, 2007.
Racine, J.S., Nonparametric Econometric Method Emerald Group Publ., 2009.