Keratolite–stromatolite consortia mimic domical and branched columnar stromatolites

Palaeogeography, Palaeoclimatology, Palaeoecology - Tập 571 - Trang 110288 - 2021
Jeong-Hyun Lee1, Robert Riding2
1Department of Geological Sciences, Chungnam National University, Daejeon 34134, Republic of Korea
2Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA

Tài liệu tham khảo

Adachi, 2009, Early Ordovician reef construction in Anhui Province, South China: A geobiological transition from microbial- to metazoan-dominant reefs, Sediment. Geol., 220, 1, 10.1016/j.sedgeo.2009.05.012 Adachi, 2017, Stromatolites near the Permian–Triassic boundary in Chongyang, Hubei Province, South China: A geobiological window into palaeo-oceanic fluctuations following the end-Permian extinction, Palaeogeography, Palaeoclimatology, Palaeoecology, 475, 55, 10.1016/j.palaeo.2017.01.030 Adachi, 2011, Early Ordovician shift in reef construction from microbial to metazoan reefs, Palaios, 26, 106, 10.2110/palo.2010.p10-097r Adachi, 2015, Cambrian Series 3 lithistid sponge–microbial reefs in Shandong Province, North China: reef development after the disappearance of archaeocyaths, Lethaia, 48, 405, 10.1111/let.12118 Ahlbrecht, 1997 Ahr, 1971, Paleoenvironment, algal structures, and fossil algae in the Upper Cambrian of central Texas, J. Sediment. Petrol., 41, 205 Aitken, 1967, Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta, J. Sediment. Petrol., 37, 1163, 10.1306/74D7185C-2B21-11D7-8648000102C1865D Antcliffe, 2014, Giving the early fossil record of sponges a squeeze, Biol. Rev., 89, 972, 10.1111/brv.12090 Aurell, 2015, Facies architecture of a microbial–siliceous sponge-dominated carbonate platform: the Bajocian of Moscardón (Middle Jurassic, Spain), 155 Bertrand-Sarfati, 1976, An attempt to classify Late Precambrian stromatolite microstructures, vol. 20, 251, 10.1016/S0070-4571(08)71138-5 Bertrand-Sarfati, 1994 Black, 1933, The algal sedimentation of Andros Island Bahamas, Philos. Trans. Roy. Soc. Lond. B. Biol. Sci., 222, 165 Borchiellini, 2001, Sponge paraphyly and the origin of Metazoa, J. Evol. Biol., 14, 171, 10.1046/j.1420-9101.2001.00244.x Botting, 2018, Early sponge evolution: A review and phylogenetic framework, Palaeoworld, 27, 1, 10.1016/j.palwor.2017.07.001 Botting, 2013, Relationships of the Cambrian Protomonaxonida (Porifera), Palaeontol. Electron., 16, 9A Brachert, 1991, Environmental control on fossilization of siliceous sponge assemblages: a proposal, 543 Brayard, 2011, Transient metazoan reefs in the aftermath of the end-Permian mass extinction, Nat. Geosci., 4, 694, 10.1038/ngeo1264 Brunton, 1994, Siliceous sponge-microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors, Palaios, 9, 370, 10.2307/3515056 Burne, 1987, Microbialites: Organosedimentary deposits of benthic microbial communities, Palaios, 2, 241, 10.2307/3514674 Campbell, 1976, Upper Cambrian stromatolitic biostrome, Clinetop Member of the Dotsero Formation, western Colorado, Geol. Soc. Am. Bull., 87, 1331, 10.1130/0016-7606(1976)87<1331:UCSBCM>2.0.CO;2 Chafetz, 1973, Morphological evolution of Cambrian algal mounds in response to a change in depositional environment, J. Sediment. Petrol., 43, 435 Chang, 2017, Sponge spicules from the lower Cambrian in the Yanjiahe Formation, South China: The earliest biomineralizing sponge record, Palaeogeogr. Palaeoclimatol. Palaeoecol., 474, 36, 10.1016/j.palaeo.2016.06.032 Chang, 2019, The Ediacaran-Cambrian rise of siliceous sponges and development of modern oceanic ecosystems, Precambrian Res., 333, 10.1016/j.precamres.2019.105438 Chen, 2014, Formative mechanisms, depositional processes, and geological implications of Furongian (late Cambrian) reefs in the North China Platform, Palaeogeogr. Palaeoclimatol. Palaeoecol., 414, 246, 10.1016/j.palaeo.2014.09.004 Coulson, 2016, Lithistid sponge-microbial reef-building communities construct laminated, Upper Cambrian (Furongian) 'stromatolites', Palaios, 31, 358, 10.2110/palo.2016.029 Dawson, 1876, Notes on the Occurrence of Eozoön canadense at Côte St. Pierre, Q. J. Geol. Soc. Lond., 32, 66, 10.1144/GSL.JGS.1876.032.01-04.10 Dawson, 1896, Note on Cryptozoon and other ancient fossils, The Canadian Record of Science, 7, 203 Debrenne, 2015, General features of the Archaeocyatha, vol. 4 and 5, 845 Des Marais, 1990, Microbial mats and the early evolution of life, Trends Ecol. Evol., 5, 140, 10.1016/0169-5347(90)90219-4 Desrochers, 1989, Middle Ordovician (Chazyan) bioherms and biostromes of the Mingan Islands, Quebec, vol. 13, 183 Droser, 2015, The advent of animals: the view from the Ediacaran, Proc. Natl. Acad. Sci., 112, 4865, 10.1073/pnas.1403669112 Ehrlich, 2013, Discovery of 505-million-year old chitin in the basal demosponge Vauxia gracilenta, Sci. Rep., 3, 3497, 10.1038/srep03497 Ehrlich, 2018, Collagens of poriferan origin, Mar. Drugs, 16, 79, 10.3390/md16030079 Elias, 2021, The “earliest tabulate corals” are not tabulates, Geology, 49, 304, 10.1130/G48235.1 Erpenbeck, 2012, Horny sponges and their affairs: on the phylogenetic relationships of keratose sponges, Mol. Phylogenet. Evol., 63, 809, 10.1016/j.ympev.2012.02.024 Erpenbeck, 2020, Soft sponges with tricky tree: on the phylogeny of dictyoceratid sponges, J. Zool. Syst. Evol. Res., 58, 27, 10.1111/jzs.12351 Evans, 2019, Slime travelers: early evidence of animal mobility and feeding in an organic mat world, Geobiology, 17, 490, 10.1111/gbi.12351 Fagerstrom, 1987 Feuda, 2017, Improved modeling of compositional heterogeneity supports sponges as sister to all other animals, Curr. Biol., 27, 3864, 10.1016/j.cub.2017.11.008 Flügel, 1989, Uppermost Permian reefs in Skyros (Greece) and Sichuan (China); implications for the Late Permian extinction event, Palaios, 4, 502, 10.2307/3514742 de Freitas, 1995, Kilometre-scale microbial buildups in a rimmed carbonate platform succession, Arctic Canada: new insight on Lower Ordovician reef facies, Bull. Can. Petrol. Geol., 43, 407 Friesenbichler, 2018, Sponge-microbial build-ups from the lowermost Triassic Chanakhchi section in southern Armenia: Microfacies and stable carbon isotopes, Palaeogeogr. Palaeoclimatol. Palaeoecol., 490, 653, 10.1016/j.palaeo.2017.11.056 Fritz, 1958, vol. 13 Gammon, 2000, Spiculites and spongolites, 681 Gammon, 2003, Paleoenvironmental controls on upper eocene biosiliceous neritic sediments, southern Australia, J. Sediment. Res., 73, 957, 10.1306/032103730957 Gammon, 2000, Eocene spiculites and spongolites in southwestern Australia: not deep, not polar, but shallow and warm, Geology, 28, 855, 10.1130/0091-7613(2000)28<855:ESASIS>2.0.CO;2 Garate, 2017, Endosymbiotic calcifying bacteria across sponge species and oceans, Sci. Rep., 7, 43674, 10.1038/srep43674 Germer, 2015, The skeleton forming proteome of an early branching metazoan: a molecular survey of the biomineralization components employed by the coralline sponge Vaceletia sp, PLoS One, 10, 10.1371/journal.pone.0140100 Geyer, 1962, 51 Gingras, 2011, Possible evolution of mobile animals in association with microbial mats, Nat. Geosci., 4, 372, 10.1038/ngeo1142 Google, 2020 Grey, 2020, Handbook for the study and description of microbialites, vol. 147 Grey, 1999, Neoproterozoic (Cryogenian) stromatolites from the Wolfe Basin, east Kimberley, Western Australia: correlation with the Centralian Superbasin, Aust. J. Earth Sci., 46, 329, 10.1046/j.1440-0952.1999.00707.x Gürich, 1906, Les spongiostromides du Viséen de la Province de Namur, vol. 3, 1 Gutiérrez-Preciado, 2018, Functional shifts in microbial mats recapitulate early Earth metabolic transitions, Nat. Ecol. Evol., 2, 1700, 10.1038/s41559-018-0683-3 Hadfield, 2011, Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites, Ann. Rev. Mar. Sci., 3, 453, 10.1146/annurev-marine-120709-142753 Hall, 1883 Hartman, 1980, Living and fossil sponges (Notes for a short course), vol. 8 Headd, 2004 Heindel, 2018, The formation of microbial-metazoan bioherms and biostromes following the latest Permian mass extinction, Gondwana Res., 61, 187, 10.1016/j.gr.2018.05.007 Hentschel, 2006, Marine sponges as microbial fermenters, FEMS Microbiol. Ecol., 55, 167, 10.1111/j.1574-6941.2005.00046.x Hersi, 2002, Stratigraphy and sedimentology of the Upper Cambrian Strites Pond Formation, Philipsburg Group, southern Quebec, and implications for the Cambrian platform in eastern Canada, Bull. Can. Petrol. Geol., 50, 542 Hong, 2012, Middle Cambrian siliceous sponge-calcimicrobe buildups (Daegi Formation, Korea): Metazoan buildup constituents in the aftermath of the Early Cambrian extinction event, Sediment. Geol., 253–254, 47, 10.1016/j.sedgeo.2012.01.011 Hong, 2014, Tales from the crypt: early adaptation of cryptobiontic sessile metazoans, Palaios, 29, 95, 10.2110/palo.2014.076 Hong, 2015, Untangling intricate microbial–sponge frameworks: the contributions of sponges to Early Ordovician reefs, Sediment. Geol., 318, 75, 10.1016/j.sedgeo.2015.01.003 Hong, 2016, Cambrian Series 3 carbonate platform of Korea dominated by microbial-sponge reefs, Sediment. Geol., 341, 58, 10.1016/j.sedgeo.2016.04.012 Hong, 2017, Construction of the earliest stromatoporoid framework: Labechiid reefs from the Middle Ordovician of Korea, Palaeogeogr. Palaeoclimatol. Palaeoecol., 470, 54, 10.1016/j.palaeo.2017.01.017 Hong, 2018, The earliest evolutionary link of metazoan bioconstruction: Laminar stromatoporoid–bryozoan reefs from the Middle Ordovician of Korea, Palaeogeogr. Palaeoclimatol. Palaeoecol., 492, 126, 10.1016/j.palaeo.2017.12.018 Hooper, 2002, Class Demospongiae Sollas, 1885, 15 James, 1989, Evolution of a Lower Paleozoic continental-margin carbonate platform, northern Canadian Appalachians, 123 Jesionowski, 2018, Marine spongin: naturally prefabricated 3D scaffold-based biomaterial, Mar. Drugs, 16, 88, 10.3390/md16030088 Ji, 1994, Conodont paleoecology of the Lower Ordovician St. George Group, Port au Port Peninsula, western Newfoundland, J. Paleontol., 1368, 10.1017/S002233600003434X Kalkowsky, 1908, Oolith und Stromatolith im norddeutschen Buntsandstein, Z. Dtsch. Geol. Ges., 60, 68 Kapp, 1975, Paleoecology of Middle Ordovician stromatoporoid mounds in Vermont, Lethaia, 8, 195, 10.1111/j.1502-3931.1975.tb00923.x Kennard, 1994, Thrombolites and stromatolites within shale-carbonate cycles, Middle-Late Cambrian Shannon Formation, Amadeus Basin, central Australia, 443 Kennard, 1986, Thrombolites and stromatolites: two distinct types of microbial structures, Palaios, 1, 492, 10.2307/3514631 Kennard, 1989, Thrombolite-stromatolite bioherm, Middle Cambrian, Port Au Port Peninsula, western Newfoundland, vol. 13, 151 Keupp, 1993, Microbial carbonate crusts - a key to the environmental analysis of fossil spongiolites?, Facies, 29, 41, 10.1007/BF02536916 Keupp, 1996, Paleobiological controls of Jurassic spongiolites, 209 Kiessling, 2002, Secular variations in the Phanerozoic reef ecosystem, 625 Knight, 1987, The stratigraphy of the Lower Ordovician St. George Group, western Newfoundland: the interaction between eustasy and tectonics, Can. J. Earth Sci., 24, 1927, 10.1139/e87-185 Knight, 2008, Tremadocian carbonate rocks of the lower St. George Group, Port au Port Peninsula, western Newfoundland: lithostratigraphic setting of diagenetic, isotopic and geochemistry studies, 115 Konhauser, 2006 Konstantinou, 2018, Sponges-Cyanobacteria associations: Global diversity overview and new data from the Eastern Mediterranean, PLoS One, 13, 10.1371/journal.pone.0195001 Kruse, 2014, Northern Australian microbial-metazoan reefs after the mid-Cambrian mass extinction, vol. 45, 31 Kwon, 2012, Tetradiid-siliceous sponge patch reefs from the Xiazhen Formation (late Katian), southeast China: A new Late Ordovician reef association, Sediment. Geol., 267–268, 15, 10.1016/j.sedgeo.2012.04.001 Larmagnat, 2015, Taphonomic filtering in Ordovician bryozoan carbonate mounds, Trenton Group, Montmorency Falls, Quebec, Canada, Palaios, 30, 169, 10.2110/palo.2013.120 Lavoie, 2019, The Cambrian-Devonian Laurentian platforms and foreland basins in eastern Canada, 77 Lavoie, 2012, The Great American Carbonate Bank in Eastern Canada: an overview, 499 Lee, 2018, Marine oxygenation, lithistid sponges, and the early history of Paleozoic skeletal reefs, Earth Sci. Rev., 181, 98, 10.1016/j.earscirev.2018.04.003 Lee, 2021, The ‘classic stromatolite’ Cryptozoön is a keratose sponge-microbial consortium, Geobiology, 19, 189, 10.1111/gbi.12422 Lee, 2010, Paleoenvironmental implications of an extensive maceriate microbialite bed in the Furongian Chaomidian Formation, Shandong Province, China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 297, 621, 10.1016/j.palaeo.2010.09.012 Lee, 2014, Furongian (late Cambrian) sponge-microbial maze-like reefs in the North China Platform, Palaios, 29, 27, 10.2110/palo.2013.050 Lee, 2015, The middle–late Cambrian reef transition and related geological events: a review and new view, Earth Sci. Rev., 145, 66, 10.1016/j.earscirev.2015.03.002 Lee, 2016, Early recovery of sponge framework reefs after Cambrian archaeocyath extinction: Zhangxia Formation (early Cambrian Series 3), Shandong, North China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 457, 269, 10.1016/j.palaeo.2016.06.018 Lee, 2016, A new Middle Ordovician bivalve–siliceous sponge–microbe reef-building consortium from North China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 457, 23, 10.1016/j.palaeo.2016.05.034 Lee, 2016, Cambrian reefs in the western North China Platform, Wuhai, Inner Mongolia, Acta Geol. Sin., 90, 1946, 10.1111/1755-6724.13014 Lee, 2018 Lee, 2019, Lithistid sponge-microbial reefs, Nevada, USA: Filling the late Cambrian ‘reef gap’, Palaeogeogr. Palaeoclimatol. Palaeoecol., 520, 251, 10.1016/j.palaeo.2019.02.003 Leinfelder, 2001, Jurassic reef ecosystems, 251 Leinfelder, 1996, Paleoecology, growth parameters and dynamics of coral, sponge and microbolite reefs from the late Jurassic, 227 Li, 1998, Precambrian sponges with cellular structures, Science, 279, 879, 10.1126/science.279.5352.879 Li, 2015, Early Ordovician lithistid sponge–Calathium reefs on the Yangtze Platform and their paleoceanographic implications, Palaeogeogr. Palaeoclimatol. Palaeoecol., 425, 84, 10.1016/j.palaeo.2015.02.034 Li, 2017, The oldest labechiid stromatoporoids from intraskeletal crypts in lithistid sponge-Calathium reefs, Lethaia, 50, 140, 10.1111/let.12182 Li, 2017, Dissecting Calathium-microbial frameworks: The significance of calathids for the Middle Ordovician reefs in the Tarim Basin, northwestern China, Palaeogeogr. Palaeoclimatol. Palaeoecol., 474, 66, 10.1016/j.palaeo.2016.08.005 Li, 2019, Stromatolite abundance anomaly in Early Ordovician: the rise of sponge-microbial association?, 113 Li, 2019, Early Ordovician sponge-bearing microbialites from Peninsular Malaysia: The initial rise of metazoans in reefs, Palaeoworld, 28, 80, 10.1016/j.palwor.2018.08.005 Liu, 1997, Lower Ordovician lithistid sponges from the eastern Yangtze Gorge Area, Hubei, China, J. Paleontol., 71, 194, 10.1017/S0022336000039135 Logan, 1961, Cryptozoon and associate stromatolites from the Recent, Shark Bay, Western Australia, J. Geol., 69, 517, 10.1086/626769 Logan, 1964, Classification and environmental significance of algal stromatolites, J. Geol., 72, 68, 10.1086/626965 Love, 2009, Fossil steroids record the appearance of Demospongiae during the Cryogenian period, Nature, 457, 718, 10.1038/nature07673 Luo, 2015 Luo, 2014, First report of fossil "keratose" demosponges in Phanerozoic carbonates: Preservation and 3-D reconstruction, Naturwissenschaften, 101, 467, 10.1007/s00114-014-1176-0 Luo, 2016, ‘Stromatolites’ built by sponges and microbes - a new type of Phanerozoic bioconstruction, Lethaia, 49, 555, 10.1111/let.12166 Luo, 2020, The first report of a vauxiid sponge from the Cambrian Chengjiang Biota, J. Paleontol., 94, 28, 10.1017/jpa.2019.52 Maldonado, 1998, Limits on the bathymetric distribution of keratose sponges: a field test in deep water, Mar. Ecol. Prog. Ser., 174, 123, 10.3354/meps174123 Miller, 2012, The Great American Carbonate Bank in the miogeocline of western central Utah: tectonic influences on sedimentation, 769 Mills, 2014, Oxygen and animal evolution: did a rise of atmospheric oxygen "trigger" the origin of animals?, Bioessays, 36, 1145, 10.1002/bies.201400101 Mills, 2014, Oxygen requirements of the earliest animals, Proc. Natl. Acad. Sci., 111, 4168, 10.1073/pnas.1400547111 Minchin, 1900, Chapter III. Sponges, 1 Monty, 1981 Muscente, 2018, Quantifying ecological impacts of mass extinctions with network analysis of fossil communities, Proc. Natl. Acad. Sci., 115, 5217, 10.1073/pnas.1719976115 Nettersheim, 2019, Putative sponge biomarkers in unicellular Rhizaria question an early rise of animals, Nat. Ecol. Evol., 3, 577, 10.1038/s41559-019-0806-5 Noffke, 2013, Stromatolites and MISS—differences between relatives, GSA Today, 23, 4, 10.1130/GSATG187A.1 Park, 2015, An Upper Ordovician sponge-bearing micritic limestone and implication for early Palaeozoic carbonate successions, Sediment. Geol., 319, 124, 10.1016/j.sedgeo.2015.02.002 Park, 2017, Crouching shells, hidden sponges: unusual Late Ordovician cavities containing sponges, Sediment. Geol., 347, 1, 10.1016/j.sedgeo.2016.11.003 Peters, 2017, The rise and fall of stromatolites in shallow marine environments, Geology, 45, 487, 10.1130/G38931.1 Pham, 2020, Keratose sponge–microbial carbonate consortium in the columnar “stromatolites” and “thrombolite” mounds from the Lower Ordovician Mungok Formation, Yeongwol, Korea, 37 Pick, 2010, Improved phylogenomic taxon sampling noticeably affects nonbilaterian relationships, Mol. Biol. Evol., 27, 1983, 10.1093/molbev/msq089 Pita, 2018, The sponge holobiont in a changing ocean: from microbes to ecosystems, Microbiome, 6, 46, 10.1186/s40168-018-0428-1 Pratt, 1982, Stromatolitic framework of carbonate mud-mounds, J. Sediment. Petrol., 52, 1203 Pratt, 1982, Cryptalgal-metazoan bioherms of early Ordovician age in the St George Group, western Newfoundland, Sedimentology, 29, 543, 10.1111/j.1365-3091.1982.tb01733.x Pratt, 1986, The St George Group (Lower Ordovician) of western Newfoundland: tidal flat island model for carbonate sedimentation in shallow epeiric seas, Sedimentology, 33, 313, 10.1111/j.1365-3091.1986.tb00540.x Pratt, 1989, Coral-Renalcis-thrombolite reef complex of Early Ordovician Age, St. George Group, western Newfoundland, 224 Pratt, 1989, Early Ordovician thrombolite reefs, St. George Group, western Newfoundland, 231 Preiss, 1971 Pruss, 2017, Environmental covariation of metazoans and microbialites in the Lower Ordovician Boat Harbour Formation, Newfoundland, Palaeogeogr. Palaeoclimatol. Palaeoecol., 485, 917, 10.1016/j.palaeo.2017.08.007 Reiswig, 2002, Class Hexactinellida Schmidt, 1870, 1201 Reiswig, 1983, Studies on hexactinellid sponges. III. The taxonomic status of hexactinellida within the porifera, Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci., 301, 419 Reitner, 1992 Reitner, 1993, Modern cryptic microbialite/metazoan facies from Lizard Island (Great Barrier Reef, Australia) formation and concepts, Facies, 29, 3, 10.1007/BF02536915 Reitner, 1994, Mikrobialith-porifera fazies eines exogyren/korallen patchreefs des oberen korallenooliths im Steinbruch Langenberg bei Oker (Niedersachsen), Berliner geowissenschaftliche Abhandlungen E13, 397 Reitner, 1991 Reitner, 1995, Mud mounds: a polygenetic spectrum of fine-grained carbonate buildups, Facies, 32, 1, 10.1007/BF02536864 Reitner, 1997, Biomineralization of calcified skeletons in three Pacific coralline demosponges - an approach to the evolution of basal skeletons, Courier Forschungsinstitut Senckenberg, 201, 371 Reitner, 2001, Porifera-rich mud mounds and microbialites as indicators of environmental changes within the Devonian/Lower Carboniferous critical interval, Terra Nostra, 4, 60 Reitner, 2011, Advances in Stromatolite Geobiology, vol. 131, 10.1007/978-3-642-10415-2 Richardson, 2012, Experimental manipulation of sponge/bacterial symbiont community composition with antibiotics: Sponge cell aggregates as a unique tool to study animal/microorganism symbiosis, FEMS Microbiol. Ecol., 81, 407, 10.1111/j.1574-6941.2012.01365.x Riding, 1999, The term stromatolite: towards an essential definition, Lethaia, 32, 321, 10.1111/j.1502-3931.1999.tb00550.x Riding, 2002, Structure and composition of organic reefs and carbonate mud mounds: concepts and categories, Earth Sci. Rev., 58, 163, 10.1016/S0012-8252(01)00089-7 Riding, 2006, Microbial carbonate abundance compared with fluctuations in metazoan diversity over geological time, Sediment. Geol., 185, 229, 10.1016/j.sedgeo.2005.12.015 Riding, 2011, The nature of stromatolites: 3,500 million years of history and a century of research, 29 Riding, 2000 Riding, 2019, Influence of dissolved oxygen on secular patterns of marine microbial carbonate abundance during the past 490 Myr, Palaeogeogr. Palaeoclimatol. Palaeoecol., 514, 135, 10.1016/j.palaeo.2018.10.006 Rodriguez-Marconi, 2015, Characterization of bacterial, archaeal and eukaryote symbionts from antarctic sponges reveals a high diversity at a three-domain level and a particular signature for this ecosystem, PLoS One, 10, 10.1371/journal.pone.0138837 Rodríguez-Martínez, 2012, Paleoenvironmental reconstruction of microbial mud mound derived boulders from gravity-flow polymictic megabreccias (Visean, SW Spain), Sediment. Geol., 263–264, 157, 10.1016/j.sedgeo.2011.06.010 Ross, 1975, 48 Rützler, 1990, Associations between Caribbean sponges and photosynthetic organisms, 455 Rützler, 2012, The role of sponges in the Mesoamerican Barrier-Reef Ecosystem, Belize, 211 Schönberg, 2016, Happy relationships between marine sponges and sediments – a review and some observations from Australia, J. Mar. Biol. Assoc. U. K., 96, 493, 10.1017/S0025315415001411 Schopf, 2000, Solution to Darwin’s dilemma: discovery of the missing Precambrian record of life, Proc. Natl. Acad. Sci., 97, 6947, 10.1073/pnas.97.13.6947 Scorrer, 2019, Carbon-isotope stratigraphy of the Furongian Berry Head Formation (Port au Port Group) and Tremadocian Watts Bight formation (St. George Group), western Newfoundland, and the correlative significance, Can. J. Earth Sci., 56, 223, 10.1139/cjes-2018-0059 Seilacher, 1999, Biomat-related lifestyles in the Precambrian, Palaios, 14, 86, 10.2307/3515363 Semikhatov, 1979, Stromatolite morphogenesis—progress and problems, Can. J. Earth Sci., 16, 992, 10.1139/e79-088 Senowbari-Daryan, 2011, Part E, revised, volume 4, chapter 7: Sphinctozoan and Inozoan hypercalcified sponges: an overview, vol. 28, 1 Sepkoski, 1981, A factor analytic description of the Phanerozoic marine fossil record, Paleobiology, 7, 36, 10.1017/S0094837300003778 Servais, 2016, The onset of the ‘Ordovician Plankton Revolution’ in the late Cambrian, Palaeogeogr. Palaeoclimatol. Palaeoecol., 458, 12, 10.1016/j.palaeo.2015.11.003 Seward, 1931 Shapiro, 2020, Part B, volume 1, chapter 8: microbialites, vol. 134, 1 Shen, 2005, Metazoan–microbial framework fabrics in a Mississippian (Carboniferous) coral–sponge–microbial reef, Monto, Queensland, Australia, Sediment. Geol., 178, 113, 10.1016/j.sedgeo.2005.03.011 Shen, 2018, Questioning the microbial origin of automicrite in Ordovician calathid-demosponge carbonate mounds, Sedimentology, 65, 303, 10.1111/sed.12394 Simion, 2017, A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals, Curr. Biol., 27, 958, 10.1016/j.cub.2017.02.031 Sperling, 2018, The temporal and environmental context of early animal evolution: Considering all the ingredients of an "explosion", Integr. Comp. Biol., 58, 605, 10.1093/icb/icy088 Stigall, 2019, Coordinated biotic and abiotic change during the Great Ordovician Biodiversification Event: Darriwilian assembly of early Paleozoic building blocks, Palaeogeogr. Palaeoclimatol. Palaeoecol., 530, 249, 10.1016/j.palaeo.2019.05.034 Stock, 2019, Latest Devonian (Famennian, expansa Zone) conodonts and sponge-microbe symbionts in Pinyon Peak Limestone, Star Range, southwestern Utah, lead to reevaluation of global Dasberg Event, Palaeogeogr. Palaeoclimatol. Palaeoecol., 534, 109271, 10.1016/j.palaeo.2019.109271 Stouge, 2001, Vendian – Lower Ordovician stratigraphy of Ella Ø, North-East Greenland: new investigations, vol. 189, 107 Taylor, 2007, Sponge-associated microorganisms: evolution, ecology, and biotechnological potential, Microbiol. Mol. Biol. Rev., 71, 295, 10.1128/MMBR.00040-06 Tomás, 2019, Architecture and paleoenvironment of mid-Jurassic microbial–siliceous sponge mounds, Northeastern Spain, J. Sediment. Res., 89, 110, 10.2110/jsr.2019.5 Tosti, 2017, Fine-grained agglutinated elongate columnar stromatolites: Tieling Formation, ca 1420 Ma, North China, Sedimentology, 64, 871, 10.1111/sed.12336 Uriz, 2012, Endosymbiotic calcifying bacteria: a new cue to the origin of calcification in metazoa?, Evolution, 66, 2993, 10.1111/j.1558-5646.2012.01676.x Vacelet, 1991, Recent Calcarea with a reinforced skeleton ("Pharetronids"), 252 Vologdin, 1962 Walcott, 1895, Algonkian rocks of the Grand Canyon, J. Geol., 3, 312, 10.1086/607191 Walcott, 1914, Cambrian geology and paleontology III: Precambrian Algonkian algal flora, vol. 64, 77 Walter, 1972, Stromatolites and the biostratigraphy of the Australian Precambrian and Cambrian Walter, 1976, Stromatolites Warnke, 1995, Calcification processes of siliceous sponges in Viséan Limestones (Counties Sligo and Leitrim, Northwestern Ireland), Facies, 33, 215, 10.1007/BF02537453 Weaver, 2007, Hierarchical assembly of the siliceous skeletal lattice of the hexactinellid sponge Euplectella aspergillum, J. Struct. Biol., 158, 93, 10.1016/j.jsb.2006.10.027 Webb, 1987, Late Mississippian thrombolite bioherms from the Pitkin Formation of northern Arkansas, Geol. Soc. Am. Bull., 99, 686, 10.1130/0016-7606(1987)99<686:LMTBFT>2.0.CO;2 Webby, 2002, Patterns of Ordovician reef development, 129 Webby, 2004 Webster, 2008, Temperature thresholds for bacterial symbiosis with a sponge, ISME J., 2, 830, 10.1038/ismej.2008.42 Weidlich, 2002, Middle and Late Permian reefs – distributional patterns and reservoir potential, 339 Whalan, 2014, Sponge larval settlement cues: the role of microbial biofilms in a warming ocean, Sci. Rep., 4, 4072, 10.1038/srep04072 Wieland, 1914, Further notes on Ozarkian seaweeds and oölites, Bull. Am. Mus. Nat. Hist., 33, 237 Wilkinson, 1990, Comparisons of sponge populations across the Barrier Reefs of Australia and Belize: evidence for higher productivity in the Caribbean, Mar. Ecol. Prog. Ser., 67, 285, 10.3354/meps067285 Williams, 1985, Humber Arm allochthon and nearby groups between Bonne Bay and Portland Creek, western Newfoundland, 399 Wood, 1990, Reef-building sponges, Am. Sci., 78, 224 Wood, 1999 Wood, 2018, Substrate growth dynamics and biomineralization of an Ediacaran encrusting poriferan, Proc. R. Soc. B, 285, 20171938, 10.1098/rspb.2017.1938 Wörheide, 2008, A hypercalcified sponge with soft relatives: Vaceletia is a keratose demosponge, Mol. Phylogenet. Evol., 47, 433, 10.1016/j.ympev.2008.01.021 Wörheide, 2012, Deep phylogeny and evolution of sponges (phylum Porifera), 1, 10.1016/B978-0-12-387787-1.00007-6 Yang, 2017, A new vauxiid sponge from the Kaili Biota (Cambrian Stage 5), Guizhou, South China, Geol. Mag., 154, 1334, 10.1017/S0016756816001229 Yao, 2020, The longest delay: Re-emergence of coral reef ecosystems after the Late Devonian extinctions, Earth Sci. Rev., 203, 10.1016/j.earscirev.2019.103060 Yin, 2015, Sponge grade body fossil with cellular resolution dating 60 Myr before the Cambrian, Proc. Natl. Acad. Sci., 112, E1453, 10.1073/pnas.1414577112 Zhou, 2019, Composition and origin of stromatactis-bearing mud-mounds (Upper Devonian, Frasnian), southern Rocky Mountains, western Canada, Sedimentology, 66, 2455, 10.1111/sed.12595