Keratinocytes take part in the regulation of substance P in melanogenesis through the HPA axis

Journal of Dermatological Science - Tập 106 - Trang 141-149 - 2022
Minghan Chen1, Jie Cai1, Xiaofeng Zhang1, Zixian Liao1, Min Zhong1, Jing Shang1,2,3,4, Yunyun Yue1
1School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
2State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
3Jiangsu Key Laboratory of TCM Evaluation and Translational Research, China Pharmaceutical University, Nanjing, Jiangsu, China
4NMPA Key Laboratory for Research and Evaluation of Cosmetics, National Institutes for Food and Drug Control, Beijing, China

Tài liệu tham khảo

Bergqvist, 2020, Vitiligo: a review, Dermatology, 236, 571, 10.1159/000506103 Iannella, 2016, Vitiligo: pathogenesis, clinical variants and treatment approaches, Autoimmun. Rev., 15, 335, 10.1016/j.autrev.2015.12.006 Silverberg, 2015, Vitiligo disease triggers: psychological stressors preceding the onset of disease, Cutis, 95, 255 Simons, 2020, Psychodermatology of vitiligo: psychological impact and consequences, Dermatol. Ther., 33, 10.1111/dth.13418 Slominski, 2000, Neuroendocrinology of the skin, Endocr. Rev., 21, 457 Slominski, 2012, Sensing the environment: regulation of local and global homeostasis by the skin neuroendocrine system, Adv. Anat. Embryol. Cell Biol., 212, 1, 10.1007/978-3-642-19683-6_1 Skobowiat, 2015, UVB activates hypothalamic-pituitary-adrenal axis in C57BL/6 mice, J. Investig. Dermatol., 135, 1638, 10.1038/jid.2014.450 Alexopoulos, 2016, Stress-related skin disorders, Rev. Endocr. Metab. Disord., 17, 295, 10.1007/s11154-016-9367-y Skobowiat, 2016, Ultraviolet B stimulates proopiomelanocortin signalling in the arcuate nucleus of the hypothalamus in mice, Exp. Dermatol., 25, 120, 10.1111/exd.12890 Skobowiat, 2017, Skin exposure to ultraviolet B rapidly activates systemic neuroendocrine and immunosuppressive responses, Photochem. Photobiol., 93, 1008, 10.1111/php.12642 Choi, 2018, Skin neurogenic inflammation, Semin. Immunopathol., 40, 249, 10.1007/s00281-018-0675-z Slominski, 1996, Potential mechanism of skin response to stress, Int. J. Dermatol., 35, 849, 10.1111/j.1365-4362.1996.tb05049.x Zbytek, 2006, Characterization of a ultraviolet B-induced corticotropin-releasing hormone-proopiomelanocortin system in human melanocytes, Mol. Endocrinol., 20, 2539, 10.1210/me.2006-0116 Slominski, 2007, Differential expression of HPA axis homolog in the skin, Mol. Cell. Endocrinol., 265–266, 143, 10.1016/j.mce.2006.12.012 Rivier, 1983, Modulation of stress-induced ACTH release by corticotropin-releasing factor, catecholamines and vasopressin, Nature, 305, 325, 10.1038/305325a0 Joachim, 2007, Neuronal plasticity of the “brain-skin connection”: stress-triggered up-regulation of neuropeptides in dorsal root ganglia and skin via nerve growth factor-dependent pathways, J. Mol. Med., 85, 1369, 10.1007/s00109-007-0236-8 Mashaghi, 2016, Neuropeptide substance P and the immune response, Cell. Mol. Life Sci., 73, 4249, 10.1007/s00018-016-2293-z Zieglgänsberger, 2019, Substance P and pain chronicity, Cell Tissue Res, 375, 227, 10.1007/s00441-018-2922-y Lénárd, 2018, Substance P and neurotensin in the limbic system: their roles in reinforcement and memory consolidation, Neurosci. Biobehav. Rev., 85, 1, 10.1016/j.neubiorev.2017.09.003 Liu, 2013, Chronic restraint stress inhibits hair growth via substance P mediated by reactive oxygen species in mice, PLOS One, 8, 19 Son, 2019, A chronic immobilization stress protocol for inducing depression-like behavior in mice, J. Vis. Exp., 2019, 1 Yin, 2000, Chronic restraint stress promotes lymphocyte apoptosis by modulating CD95 expression, J. Exp. Med., 191, 1423, 10.1084/jem.191.8.1423 Lu, 2007, Towards the development of a simplified long-term organ culture method for human scalp skin and its appendages under serum-free conditions, Exp. Dermatol., 16, 37, 10.1111/j.1600-0625.2006.00510.x Phelan, 2016, Basic techniques in mammalian cell tissue culture, Curr. Protoc. Toxicol., 2016, A.3B.1 Dong, 2017, Interleukin-22 participates in the inflammatory process of vitiligo, Oncotarget, 8, 109161, 10.18632/oncotarget.22644 Mosmann, 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65, 55, 10.1016/0022-1759(83)90303-4 Tomita, 1992, Melanocyte‐stimulating properties of arachidonic acid metabolites: possible role in postinflammatory pigmentation, Pigment Cell Res., 5, 357, 10.1111/j.1600-0749.1992.tb00562.x Zhou, 2013, Interleukin-18 augments growth ability of primary human melanocytes by PTEN inactivation through the AKT/NF-κB pathway, Int. J. Biochem. Cell Biol., 45, 308, 10.1016/j.biocel.2012.11.008 Liao, 2017, Effects of two chronic stresses on mental state and hair follicle melanogenesis in mice, Exp. Dermatol., 26, 1083, 10.1111/exd.13380 Hazlett, 2007, Spantide I decreases type I cytokines, enhances IL-10, and reduces corneal perforation in susceptible mice after Pseudomonas aeruginosa infection, Investig. Ophthalmol. Vis. Sci., 48, 797, 10.1167/iovs.06-0882 Janecka, 2005, Comparison of antagonist activity of spantide family at human neurokinin receptors measured by aequorin luminescence-based functional calcium assay, Regul. Pept., 131, 23, 10.1016/j.regpep.2005.05.006 Saeedi, 2019, Kojic acid applications in cosmetic and pharmaceutical preparations, Biomed. Pharmacother., 110, 582, 10.1016/j.biopha.2018.12.006 Kumar, 2018, Analysis of cell viability by the lactate dehydrogenase assay, Cold Spring Harb. Protoc., 2018, 465 Jurisic, 2015, The actual role of LDH as tumor marker, biochemical and clinical aspects, Adv. Exp. Med. Biol., 867, 115, 10.1007/978-94-017-7215-0_8 Sviatoha, 2010, Immunohistochemical analysis of the S100A1, S100B, CD44 and Bcl-2 antigens and the rate of cell proliferation assessed by Ki-67 antibody in benign and malignant melanocytic tumours, Melanoma Res., 20, 118, 10.1097/CMR.0b013e3283350554 Slominski, 2000, Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress, Physiol. Rev., 80, 979, 10.1152/physrev.2000.80.3.979 García-Borrón, 2005, Melanocortin-1 receptor structure and functional regulation, Pigment Cell Res., 18, 393, 10.1111/j.1600-0749.2005.00278.x Pang, 2014, Chronic stress suppresses the expression of cutaneous hypothalamic- pituitary-adrenocortical axis elements and melanogenesis, PLOS One, 9, 1, 10.1371/journal.pone.0098283 Thakur, 2015, A study of hair follicular transplantation as a treatment option for vitiligo, J. Cutan. Aesthet. Surg., 8, 211, 10.4103/0974-2077.172192 Ghasemi, 2020, Hair follicle as a source of pigment-producing cells for treatment of vitiligo: an alternative to epidermis?, Tissue Eng. Regen. Med., 17, 815, 10.1007/s13770-020-00284-2 Shah, 2016, A study of noncultured extracted hair follicle outer root sheath cell suspension for transplantation in vitiligo, Int. J. Trichol., 8, 67, 10.4103/0974-7753.188042 Slominski, 2013, Key role of CRF in the skin stress response system, Endocr. Rev., 34, 827, 10.1210/er.2012-1092 Pillaiyar, 2017, Downregulation of melanogenesis: drug discovery and therapeutic options, Drug Discov. Today, 22, 282, 10.1016/j.drudis.2016.09.016 Jung, 2016, Afzelin positively regulates melanogenesis through the p38 MAPK pathway, Chem. Biol. Interact., 254, 167, 10.1016/j.cbi.2016.06.010 Slominski, 2005, CRH stimulation of corticosteroids production in melanocytes is mediated by ACTH, Am. J. Physiol. - Endocrinol. Metab., 288, E701, 10.1152/ajpendo.00519.2004 Ping, 2012, Activation of neurokinin-1 receptor by substance P inhibits melanogenesis in B16-F10 melanoma cells, Int. J. Biochem. Cell Biol., 44, 2342, 10.1016/j.biocel.2012.09.025 Zhou, 2015, Calcitonin gene-related peptide cooperates with substance P to inhibit melanogenesis and induces apoptosis of B16F10 cells, Cytokine, 74, 137, 10.1016/j.cyto.2015.01.034 Slominski, 2004, Melanin pigmentation in mammalian skin and its hormonal regulation, Physiol. Rev., 84, 1155, 10.1152/physrev.00044.2003