Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra 𝔤𝔩(𝔪|𝔫)

Journal of the American Mathematical Society - Tập 16 Số 1 - Trang 185-231
Jonathan Brundan1
1Department of Mathematics, University of Oregon, Eugene, Oregon, 97403

Tóm tắt

We compute the characters of the finite dimensional irreducible representations of the Lie superalgebragl(m|n)\mathfrak {gl}(m|n), and determineExt{\operatorname {Ext}}’s between simple modules in the category of finite dimensional representations. We formulate conjectures for the analogous results in categoryO\mathcal O. The combinatorics parallels the combinatorics of certain canonical bases over the Lie algebragl()\mathfrak {gl}(\infty ).

Từ khóa


Tài liệu tham khảo

Beĭlinson, Alexandre, 1981, Localisation de 𝑔-modules, C. R. Acad. Sci. Paris S\'{e}r. I Math., 292, 15

Beilinson, Alexander, 1996, Koszul duality patterns in representation theory, J. Amer. Math. Soc., 9, 473, 10.1090/S0894-0347-96-00192-0

Sundaram, S. Minakshi, 1939, On non-linear partial differential equations of the parabolic type, Proc. Indian Acad. Sci., Sect. A., 9, 479, 10.1007/BF03046993

Bernšteĭn, I. N., 1976, A certain category of 𝔤-modules, Funkcional. Anal. i Prilo\v{z}en., 10, 1

Bernšteĭn, I. N., 1980, A formula for the characters of the irreducible finite-dimensional representations of Lie superalgebras of series 𝐺𝑙 and 𝑠𝑙, C. R. Acad. Bulgare Sci., 33, 1049

Bourbaki, Nicolas, 1989, Commutative algebra. Chapters 1--7

Brundan, Jonathan, 1998, Modular branching rules and the Mullineux map for Hecke algebras of type 𝐴, Proc. London Math. Soc. (3), 77, 551, 10.1112/S0024611598000562

[B2]Btilt J. Brundan, Tilting modules for Lie superalgebras, preprint, University of Oregon, 2002, available from \url{http://darkwing.uoregon.edu/ brundan/research.html}.

Brundan, Jonathan, 2001, Hecke-Clifford superalgebras, crystals of type 𝐴_{2𝑙}⁽²⁾ and modular branching rules for 𝑆̂_{𝑛}, Represent. Theory, 5, 317, 10.1090/S1088-4165-01-00123-6

[BKu]BKu J. Brundan and J. Kujawa, A new proof of the Mullineux conjecture, preprint, University of Oregon, 2002.

Brylinski, J.-L., 1981, Kazhdan-Lusztig conjecture and holonomic systems, Invent. Math., 64, 387, 10.1007/BF01389272

Cline, E., 1988, Finite-dimensional algebras and highest weight categories, J. Reine Angew. Math., 391, 85

Cline, Edward T., 1989, Duality in highest weight categories, 7, 10.1090/conm/082/982273

Cline, Edward, 1993, Abstract Kazhdan-Lusztig theories, Tohoku Math. J. (2), 45, 511, 10.2748/tmj/1178225846

Cline, Edward, 1992, Infinitesimal Kazhdan-Lusztig theories, 43, 10.1090/conm/139/1197829

Deodhar, Vinay V., 1987, On some geometric aspects of Bruhat orderings. II. The parabolic analogue of Kazhdan-Lusztig polynomials, J. Algebra, 111, 483, 10.1016/0021-8693(87)90232-8

Dixmier, Jacques, 1996, Enveloping algebras, 11, 10.1090/gsm/011

Du, Jie, 1994, 𝐼𝐶 bases and quantum linear groups, 135

Du, Jie, 1995, A note on quantized Weyl reciprocity at roots of unity, Algebra Colloq., 2, 363

Frenkel, I. B., 1998, Kazhdan-Lusztig polynomials and canonical basis, Transform. Groups, 3, 321, 10.1007/BF01234531

Hughes, J. W. B., 1992, On the composition factors of Kac modules for the Lie superalgebras 𝑠𝑙(𝑚/𝑛), J. Math. Phys., 33, 470, 10.1063/1.529782

Jantzen, Jens Carsten, 1979, Moduln mit einem h\"{o}chsten Gewicht, 750, 10.1007/BFb0069521

Jantzen, Jens Carsten, 1987, Representations of algebraic groups, 131

Van der Jeugt, J., 1990, Character formulas for irreducible modules of the Lie superalgebras 𝑠𝑙(𝑚/𝑛), J. Math. Phys., 31, 2278, 10.1063/1.528637

Van der Jeugt, J., 1990, A character formula for singly atypical modules of the Lie superalgebra 𝑠𝑙(𝑚/𝑛), Comm. Algebra, 18, 3453, 10.1080/00927879008824086

Van der Jeugt, J., 1999, Characters and composition factor multiplicities for the Lie superalgebra 𝔤𝔩(𝔪/𝔫), Lett. Math. Phys., 47, 49, 10.1023/A:1007590920834

Kac, V. G., 1977, Lie superalgebras, Advances in Math., 26, 8, 10.1016/0001-8708(77)90017-2

Kac, V. G., 1977, Characters of typical representations of classical Lie superalgebras, Comm. Algebra, 5, 889, 10.1080/00927877708822201

Kac, V., 1978, Representations of classical Lie superalgebras, 597

Kac, Victor G., 1994, Integrable highest weight modules over affine superalgebras and number theory, 415, 10.1007/978-1-4612-0261-5_15

Kashiwara, Masaki, 1993, Global crystal bases of quantum groups, Duke Math. J., 69, 455, 10.1215/S0012-7094-93-06920-7

Kashiwara, Masaki, 1995, On crystal bases, 155

Kazhdan, David, 1979, Representations of Coxeter groups and Hecke algebras, Invent. Math., 53, 165, 10.1007/BF01390031

Kober, Hermann, 1939, Transformationen von algebraischem Typ, Ann. of Math. (2), 40, 549, 10.2307/1968939

[Ku]kthesis J. Kujawa, The representation theory of the supergroup 𝐺𝐿(𝑚|𝑛), PhD thesis, University of Oregon, 2003.

Lascoux, Alain, 1996, Hecke algebras at roots of unity and crystal bases of quantum affine algebras, Comm. Math. Phys., 181, 205, 10.1007/BF02101678

Lusztig, George, 1993, Introduction to quantum groups, 110

Macdonald, I. G., 1995, Symmetric functions and Hall polynomials, 2, 10.1093/oso/9780198534891.001.0001

Manin, Yuri I., 1997, Gauge field theory and complex geometry, 289, 2, 10.1007/978-3-662-07386-5

Penkov, Ivan, 1992, Representations of classical Lie superalgebras of type 𝐼, Indag. Math. (N.S.), 3, 419, 10.1016/0019-3577(92)90020-L

Penkov, Ivan, 1994, Generic irreducible representations of finite-dimensional Lie superalgebras, Internat. J. Math., 5, 389, 10.1142/S0129167X9400022X

[S1]sergthesis V. Serganova, Automorphisms of complex simple Lie superalgebras and affine Kac-Moody algebras, PhD thesis, Leningrad State University, 1988.

Serganova, Vera, 1993, Kazhdan-Lusztig polynomials for Lie superalgebra 𝔤𝔩(𝔪|𝔫), 151

Serganova, Vera, 1996, Kazhdan-Lusztig polynomials and character formula for the Lie superalgebra 𝔤𝔩(𝔪|𝔫), Selecta Math. (N.S.), 2, 607, 10.1007/PL00001385

Sergeev, A. N., 1984, Tensor algebra of the identity representation as a module over the Lie superalgebras 𝐺𝑙(𝑛,𝑚) and 𝑄(𝑛), Mat. Sb. (N.S.), 123(165), 422

[Sg2]sergeev A. Sergeev, Enveloping algebra centre for Lie superalgebras 𝐺𝐿 and 𝑄, PhD thesis, Moscow State University, 1987.

Sergeev, Alexander, 1999, The invariant polynomials on simple Lie superalgebras, Represent. Theory, 3, 250, 10.1090/S1088-4165-99-00077-1

Soergel, Wolfgang, 1997, Kazhdan-Lusztig polynomials and a combinatoric[s] for tilting modules, Represent. Theory, 1, 83, 10.1090/S1088-4165-97-00021-6

Soergel, Wolfgang, 1998, Character formulas for tilting modules over Kac-Moody algebras, Represent. Theory, 2, 432, 10.1090/S1088-4165-98-00057-0

Vogan, David A., Jr., 1979, Irreducible characters of semisimple Lie groups. II. The Kazhdan-Lusztig conjectures, Duke Math. J., 46, 805

Weibel, Charles A., 1994, An introduction to homological algebra, 38, 10.1017/CBO9781139644136

Zou, Yi Ming, 1996, Categories of finite-dimensional weight modules over type I classical Lie superalgebras, J. Algebra, 180, 459, 10.1006/jabr.1996.0077