Kantorovich distance on finite metric spaces: Arens–Eells norm and CUT norms

Luigi Montrucchio1, Giovanni Pistone2
1Collegio Carlo Alberto, Turin, Italy
2de Castro Statistics, Turin, Italy

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice-Hall Inc, Englewood Cliffs (1993)

Aliaga, R.J., Rueda Zoca, A.: Points of differentiability of the norm in Lipschitz-free spaces. J. Math. Anal. Appl. 489(2), 124171 (2020). https://doi.org/10.1016/j.jmaa.2020.124171

Amari, S., Nagaoka, H.: Methods of Information Geometry. American Mathematical Society, translated from the 1993 Japanese original by Daishi Harada (2000)

Amari, S., Karakida, R., Oizumi, M.: Information geometry connecting Wasserstein distance and Kullback–Leibler divergence via the entropy-relaxed transportation problem. Inf. Geom. 1(1), 13–37 (2018). https://doi.org/10.1007/s41884-018-0002-8

Arens, R.F., Eells, J. Jr.: On embedding uniform and topological spaces. Pac. J. Math. 6, 397–403 (1956). http://projecteuclid.org/euclid.pjm/1103043959

Bandelt, H.J., Dress, A.W.M.: A canonical decomposition theory for metrics on a finite set. Adv. Math. 92(1), 47–105 (1992). https://doi.org/10.1016/0001-8708(92)90061-O

Barvinok, A.: A Course in Convexity, Graduate Studies in Mathematics, vol. 54. American Mathematical Society, Providence (2002)

Bassetti, F., Gualandi, S., Veneroni, M.: On the computation of Kantorovich–Wasserstein distances between two-dimensional histograms by uncapacitated minimum cost flows. SIAM J. Optim. 30(3), 2441–2469 (2020). https://doi.org/10.1137/19M1261195

Bergman, G.M.: Mapping radii of metric spaces. Pac. J. Math. 236(2), 223–261 (2008). https://doi.org/10.2140/pjm.2008.236.223

Bollobás, B.: Modern Graph Theory, Graduate Texts in Mathematics, vol. 184. Springer, Berlin (1998)

Buneman, P.: A note on the metric properties of trees. J. Combin. Theory Ser. B 17, 48–50 (1974). https://doi.org/10.1016/0095-8956(74)90047-1

Cabrelli, C.A., Molter, U.M.: The Kantorovich metric for probability measures on the circle. J. Comput. Appl. Math. 57(3), 345–361 (1995). https://doi.org/10.1016/0377-0427(93)E0213-6

Deza, M.M., Laurent, M.: Geometry of Cuts and Metrics, Algorithms and Combinatorics, vol.  15. Springer, Berlin (1997). https://doi.org/10.1007/978-3-642-04295-9

Farmer, J.D.: Extreme points of the unit ball of the space of Lipschitz functions. Proc. Am. Math. Soc. 121(3), 807–813 (1994). https://doi.org/10.2307/2160280

Gini, C.: Di una misura della dissomiglianza di due gruppi di quantità e delle sue applicazioni allo studio delle relazioni statistiche. Atti R Ist Veneto Sc Lett Arti LXXIV, 185–213 (1914)

Godard, A.: Tree metrics and their Lipschitz-free spaces. Proc. Am. Math. Soc. 138(12), 4311–4320 (2010). https://doi.org/10.1090/S0002-9939-2010-10421-5

Kloeckner, B.R.: A geometric study of Wasserstein spaces: ultrametrics. Mathematika 61(1), 162–178 (2015). https://doi.org/10.1112/S0025579314000059

Kruskal Jr., J.B.: On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 7, 48–50 (1956). https://doi.org/10.2307/2033241

Megginson, R.E.: An Introduction to Banach Space Theory, Graduate Texts in Mathematics, vol. 183. Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0603-3

Mendivil, F.: Computing the Monge–Kantorovich distance. Comput. Appl. Math. 36(3), 1389–1402 (2017). https://doi.org/10.1007/s40314-015-0303-7

Peyré, G., Cuturi, M.: Computational optimal transport. Found. Trends Mach. Learn. 11(5–6), 355–607. arXiv:1803.00567v2 (2019)

Pistone, G., Rapallo, F., Rogantin, M.P.: Finite space Kantorovich problem with an MCMC of table moves. Electron. J. Stat. 15(1), 880–907 (2021). https://doi.org/10.1214/21-EJS1804

Santambrogio, F.: Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs, and Modeling. Birkhäuser (2015)

Smarzewski, R.: Extreme points of unit balls in Lipschitz function spaces. Proc. Am. Math. Soc. 125(5), 1391–1397 (1997). https://doi.org/10.1090/S0002-9939-97-03866-5

Sommerfeld, M., Munk, A.: Inference for empirical Wasserstein distances on finite spaces. J. R. Stat. Soc. Ser. B Stat. Methodol. 80(1), 219–238 (2018). https://doi.org/10.1111/rssb.12236

Villani, C.: Optimal Transport: Old and New. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2008). https://books.google.it/books?id=hV8o5R7_5tkC

Weaver, N.: Lipschitz Algebras, 2nd edn. World Scientific Publishing Co. Pte. Ltd., Hackensack (2018)

Zălinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge (2002). https://doi.org/10.1142/9789812777096