Kamchatka Meteoroid Effects in the Geomagnetic Field

L. F. Chernogor1
1[Karazin Kharkiv National University, Kharkiv, Ukraine]

Tóm tắt

The data acquired at ten geomagnetic observatories (Paratunka, Magadan, Yakutsk, and Khabarovsk (the Russian Federation); Memambetsu, Kanoya, and Kakioka (Japan); Cheongyang (Republic of Korea); Shumagin and College (USA)) during the Kamchatka meteoroid event of December 18, 2018, and on the reference days of December 17 and 19, 2018, have been used to analyze temporal variations in the geomagnetic field components. The distance r from the observatories to the site of explosive energy release by the meteoroid varied from 1.001 to 4.247 Mm. The passage of the Kamchatka meteoroid through the magnetosphere and atmosphere was accompanied by variations mainly in the H geomagnetic field component. The magnetic effect from the magnetosphere was observed to occur twice, 51 and 28 min prior to the meteoroid explosion; the amplitude of the disturbances in the geomagnetic field did not exceed 0.2–1 nT, and the durations were observed to be approximately 20 and 10 min, respectively. Alternating peaks in the level of the H component were observed to lag behind the meteoroid explosion by 8 to 13 min for r from 1.001 to 4.247 Mm. The amplitude of the oscillations varied with increasing r from ~0.5 to ~0.1 nT, while the duration of the magnetic effect from the ionosphere varied in the 16–25-min range for all distances. The apparent speed of propagation in this group of disturbances that were of MHD nature was observed to be approximately 10 km/s. In the second group of disturbances, the time lag increased with increasing distance within the distance range mentioned above from 56 to 218 min. The duration of the disturbance was approximately 16–65 min, the apparent speed was 336 m/s, and the period was 5–10 min. This disturbance in the magnetic field was caused by an atmospheric gravity wave propagating from the meteoroid explosion. The theoretical models for the magnetic effects observed are presented and theoretical estimates are performed. The observations are in agreement with the estimates.

Từ khóa


Tài liệu tham khảo

I. S. Astapovich, Meteoritic Phenomena in the Earth’s Atmosphere (Fizmatgiz, Moscow, 1958) [in Russian]. V. A. Bronshten, Tunguska Meteorite: A History of Research (A. D. Sel’yanov, Moscow, 2000) [in Russian]. V. A. Bronshten, “Magnetic effect of the Tungus meteorite,” Geomagn. Aeron. (Engl. Transl.) 42, 816–818 (2002). V. D. Gol’din, “On the interpretation of some geophysical phenomena accompanying the fall of the Tunguska meteorite,” in Cosmic Matter and the Earth (Nauka, Novosibirsk, 1986), pp. 44–62 [in Russian]. E. I. Gordeev, S. N. Kulichkov, P. P. Firstov, O. E. Popov, I. P. Chunchuzov, D. I. Budilov, and D. V. Chebrov, “Infrasonic waves and assessment of the explosion energy of the Bering Sea meteoroid on December 19, 2018,” Dokl. Earth Sci. 489, 1436–1439 (2019). https://doi.org/10.1134/S1028334X19120043 E. E. Gossard and W. H. Hooke, Waves in the Atmosphere: Atmospheric Infrasound and Gravity Waves, Their Generation and Propagation (Elsevier, Amsterdam, 1975; Mir, Moscow, 1978). A. V. Zolotov, The Problem of 1908 Tunguska Catastrophe (Nauka i Tekhnika, Minsk, 1969) [in Russian]. K. G. Ivanov, “Geomagnetic effects that were observed at the Irkutsk Magnetographic Observatory after the explosion of the Tunguska meteorite,” Meteoritika 21, 46–48 (1961). K. G. Ivanov, “On the causes of the subsequent field changes in the geomagnetic effect of the Tunguska meteorite,” Geomagn. Aeron. 1, 616–618 (1961). K. G. Ivanov, “Geomagnetic effects of explosions in the lower atmosphere,” Geomagn. Aeron. 2, 153–160 (1962). K. G. Ivanov, “Geomagnetic effect of Tunguska event,” Meteoritika 24, 141–151 (1964). K. G. Ivanov, “Revisiting the problem of simulation of the geomagnetic effect induced by the Tunguska impact,” Geomagn. Aeron. 42, 857–858 (2002). G. M. Idlis and Z. V. Karyagina, “On the cometary origin of the Tunguska meteorite,” Meteoritika 21, 32–43 (1961). A. G. Kalashnikov, “Observation of the magnetic effect of meteors by the induction method,” Dokl. Akad. Nauk SSSR 66, 373–376 (1949). A. G. Kalashnikov, “Magnetic effect of meteors,” Izv. Akad. Nauk SSSR, Ser. Geofiz. 6, 7–20 (1952). Catastrophic Events Caused by Cosmic Objects, Ed. by V. V. Adushkin and I. V. Nemchinov (Akademkniga, Moscow, 2005; Springer-Verlag, Dordrecht, 2008). https://doi.org/10.1007/978-1-4020-6452-4 A. T. Kovalev, I. V. Nemchinov, and V. V. Shuvalov, “Ionospheric and magnetospheric disturbances caused by impacts of small comets and asteroids,” Sol. Syst. Res. 40, 57–67 (2006). A. F. Kovalevskii, “Revisiting the problem of geomagnetic effects of large explosions,” Tr. Sib. Fiz.-Tekh. Inst. Tomsk. Univ. 41, 87–91 (1962). A. F. Kovalevskii, “Magnetic effect of the Tunguska meteorite explosion,” in The Problem of Tunguska Meteorite (Tomsk. Gos. Univ., Tomsk, 1963), pp. 187–194 [in Russian]. O. A. Molchanov, Low-Frequency Waves and Induced Radiation in the Near-Earth Plasma (Nauka, Moscow, 1985) [in Russian]. G. O. Obashev, “On the geomagnetic effect of the Tunguska meteorite,” Meteoritika 21, 49–52 (1961). K. A. Skripko, “Bering Sea meteor huge explosion,” Zhizn Zemli 41 (2) (2019). V. M. Sorokin and G. V. Fedorovich, Physics of Slow MHD Waves in the Ionospheric Plasma (Energoizdat, Moscow, 1982) [in Russian]. L. F. Chernogor, Radiophysical and Geomagnetic Effects of Rocket Engine Burn: Monograph (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2009) [in Russian]. L. F. Chernogor, “Oscillations of the geomagnetic field caused by the flight of Vitim bolide on September 24, 2002,” Geomagn. Aeron. (Engl. Transl.) 51, 116–130 (2011). https://doi.org/10.1134/S0016793211010038 L. F. Chernogor, Physics and Ecology of the Catastrophes (Khark. Nats. Univ. im. V. N. Karazina, Kharkiv, 2012) [in Russian]. L. F. Chernogor, “Large-scale disturbances in the Earth’s magnetic field associated with the Chelyabinsk meteorite,” Radiofiz. Elektron. 4(18) (3), 47–54 (2013). L. F. Chernogor, “The main physical effects associated with the Chelyabinsk bolide passage,” in Asteroids and Comets. Chelyabinsk Event and Study of the Meteorite Falling into the Lake Chebarkul: Proc. Int. Sci.-Pract. Conf., Cherbakul, Russia, June 21–22, 2013 (Krai Ra, Chelyabinsk, 2013), pp. 148–152. L. F. Chernogor, “Plasma, electromagnetic and acoustic effects of meteorite "Chelyabinsk”,” Inzh. Fiz., No. 8, 23–40 (2013). L. F. Chernogor, “Geomagnetic field effects of the Chelyabinsk meteoroid,” Geomagn. Aeron. (Engl. Transl.) 54, 613–624 (2014). https://doi.org/10.1134/S001679321405003X L. F. Chernogor, “Magnetic and ionospheric effects of a meteoroid plume,” Geomagn. Aeron. (Engl. Transl.) 58, 119–126 (2018). https://doi.org/10.1134/S0016793218010048 L. F. Chernogor, “Magnetospheric effects during the approach of the Chelyabinsk meteoroid,” Geomagn. Aeron. (Engl. Transl.) 58, 252–265 (2018). https://doi.org/10.1134/S0016793218020044 L. F. Chernogor, “Effects of the Lipetsk meteoroid in the geomagnetic field,” Geomagn. Aeron. (Engl. Transl.) 60, 355–372 (2020). https://doi.org/10.1134/S0016793220030032 L. F. Chernogor, “Kamchatka meteoroid effects in the lithosphere–atmosphere– ionosphere–magnetosphere system,” in Problems of Geocosmos: Proc. 13th Int. Conf. and School, St. Petersburg, Russia, Mar. 24–27, 2021 (VVM, St. Petersburg, 2021), pp. 400–410. L. F. Chernogor, K. P. Garmash, Q. Guo, V. T. Rozumenko, and Y. Zheng, “Ionospheric effects of the Kamchatka meteoroid: Results of multiple-path oblique incidence,” in Problems of Geocosmos: Proc. 13th Int. Conf. and School, St. Petersburg, Russia, Mar. 24–27, 2021 (VVM, St. Petersburg, 2021), pp. 380–388. L. F. Chernogor, “Geomagnetic variations caused by the Lipetsk meteoroid’s passage and explosion: Measurement results,” Kinematics Phys. Celestial Bodies 36, 79–93 (2020). https://doi.org/10.3103/S0884591320020038 L. F. Chernogor, O. I. Liashchuk, and M. B. Shevelev, “Parameters of the infrasonic signal generated by the Kamchatka meteoroid,” Kinematics Phys. Celestial Bodies 36, 222–237 (2020). https://doi.org/10.3103/S0884591320050037 J. Borovička, M. Setvák, H. Roesli, and J. K. Kerkmann, “Satellite observation of the dust trail of a major bolide event over the Bering Sea on December 18, 2018,” Astron. Astrophys. 644, A58 (2020). https://doi.org/10.1051/0004-6361/202039393 P. G. Brown, J. D. Assink, L. Astiz, R. Blaauw, M. B. Boslough, J. Borovička, N. Brachet, D. Brown, M. Campbell-Brown, L. Ceranna, W. Cooke, C. De Groot-Hedlin, D. P. Drob, W. Edwards, L. G. Evers, M. Garces, J. Gill, M. Hedlin, A. Kingery, G. Laske, A. Le Pichon, P. Mialle, D. E. Moser, A. Saffer, E. Silber, P. Smets, R. E. Spalding, P. Spurný, E. Tagliaferri, D. Uren, R. J. Weryk, R. Whitaker, and Z. Krzeminski, “500-kilotone airburst over Chelyabinsk and an enhanced hazard from small impactors,” Nature 503, 238–241 (2013). https://doi.org/10.1038/nature12741 P. Brown, R. E. Spalding, D. O. ReVelle, E. Tagliaferri, and S. P. Worden, “The flux of small near-Earth objects colliding with the Earth,” Nature 420, 294–296 (2002). https://doi.org/10.1038/nature01238 Center for Near Earth Object Studies. https://cneos.jpl.nasa.gov/fireballs/. Accessed July 11, 2021. L. F. Chernogor, “Physical effects of the Kamchatka meteoroid,” in Proc. Astronomy and Space Physics in the Kyiv University, Kyiv, Ukraine, May 27–29, 2020 (Kyiv Nats. Univ. im. T. Shevchenka, Kyiv, 2020), pp. 70–71. L. F. Chernogor, “Litosphere–atmosphere–ionosphere–magnetosphere effects of the Kamchatka meteoroid,” in Problems of Geocosmos: Proc. 13th Int. Conf. and School, St. Petersburg, Russia, Mar. 24–27, 2021 (VVM, St. Petersburg, 2021), Section STP: Solar-Terrestrial Physics, paper id. STP004. https://geo.phys.spbu.ru/geocosmos/ 2020/data/data/htmls/STP/STP004.html. L. F. Chernogor and N. Blaunstein, Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment (CRC/Taylor & Francis, Boca Raton, Fla., 2013). L. F. Chernogor, K. P. Garmash, Q. Guo, V. Rozumenko, and Yu. Zheng, “Ionospheric effects of the Kamchatka Meteoroid,” Problems of Geocosmos: Proc. 13th Int. Conf. and School, St. Petersburg, Russia, Mar. 24–27, 2021 (VVM, St. Petersburg, 2021), Section STP: Solar-Terrestrial Physics, paper id. STP002. https:// geo.phys.spbu.ru/geocosmos/2020/data/data/htmls/STP/STP002.html. L. F. Chernogor, O. I. Liashchuk, and M. B. Shevelev, “Infrasonic effects of the Kamchatka meteoroid,” in Proc. Astronomy and Space Physics in the Kyiv University, Kyiv, Ukraine, May 27–29, 2020 (Kyiv Nats. Univ. im. T. Shevchenka, Kyiv, 2020), pp. 71–72. B. G. Gavrilov, V. A. Pilipenko, Y. V. Poklad, and I. A. Ryakhovsky, “Geomagnetic effect of the Bering Sea meteoroid,” Russ. J. Earth Sci. 20, ES6009 (2020). https://doi.org/10.2205/2020ES000748 Infrasound Monitoring for Atmospheric Studies, Ed. by A. Le Pichon, E. Blanc, and A. Hauchecorne (Springer-Verlag, Dordrecht, 2019). https://doi.org/10.1007/978-3-319-75140-5 Y. Luo, L. F. Chernogor, K. P. Garmash, Q. Guo, V. T. Rozumenko, S. N. Shulga, and Y. Zheng, “Ionospheric effects of the Kamchatka meteoroid: Results from multipath oblique sounding,” J. Atmos. Sol.-Terr. Phys. 207, 105336 (2020). https://doi.org/10.1016/j.jastp.2020.105336 Y. Luo, Y. Yao, and L. Shan, “Analysis of ionospheric disturbances caused by the 2018 Bering Sea meteor explosion based on GPS observations,” Sensors 20, 3201 (2020). https://doi.org/10.3390/s20113201 C. Pilger, P. Gaebler, P. Hupe, T. Ott, and E. Drolshagen, “Global monitoring and characterization of infrasound signatures by large fireballs,” Atmosphere 11, 83 (2020). https://doi.org/10.3390/atmos11010083 O. P. Popova, “Chelyabinsk meteorite,” in Oxford Research Encyclopedia of Planetary Science (Oxford Univ. Press, 2021). https://doi.org/10.1093/acrefore/9780190647926.013.22 O. P. Popova, P. Jenniskens, V. Emel’yanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Kharlamov, A. Solovyov, Yu. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Yu. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X.-H. Li, Q.-L. Li, Liu Yu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Chelyabinsk airburst, damage assessment, meteorite, and characterization,” Science 342, 1069–1073 (2013). O. P. Popova, P. Jenniskens, V. Emel’yanenko, A. Kartashova, E. Biryukov, S. Khaibrakhmanov, V. Shuvalov, Y. Rybnov, A. Dudorov, V. I. Grokhovsky, D. D. Badyukov, Q.-Z. Yin, P. S. Gural, J. Albers, M. Granvik, L. G. Evers, J. Kuiper, V. Kharlamov, A. Solovyov, Yu. S. Rusakov, S. Korotkiy, I. Serdyuk, A. V. Korochantsev, M. Yu. Larionov, D. Glazachev, A. E. Mayer, G. Gisler, S. V. Gladkovsky, J. Wimpenny, M. E. Sanborn, A. Yamakawa, K. L. Verosub, D. J. Rowland, S. Roeske, N. W. Botto, J. M. Friedrich, M. E. Zolensky, L. Le, D. Ross, K. Ziegler, T. Nakamura, I. Ahn, J. I. Lee, Q. Zhou, X.-H. Li, Q.-L. Li, Liu Yu, G.-Q. Tang, T. Hiroi, D. Sears, I. A. Weinstein, A. S. Vokhmintsev, A. V. Ishchenko, P. Schmitt-Kopplin, N. Hertkorn, K. Nagao, M. K. Haba, M. Komatsu, and T. Mikouchi, “Supplementary material for Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization,” Science 342 (2013). N. T. Redd, “Fireball over the Bering Sea,” Eos, Mar. 28 (2019). https://doi.org/10.1029/2019EO119503 Space Weather Prediction Center National Oceanic and Atmospheric Administration. ftp://ftp.swpc.noaa.gov/ pub/lists/ace2/. Accessed February 18, 2019.