KPZ equation, its renormalization and invariant measures

Springer Science and Business Media LLC - Tập 3 Số 2 - Trang 159-220 - 2015
Tadahisa Funaki1, Jeremy Quastel2
1Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Japan
2Department of Mathematics, University of Toronto, Toronto, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)

Agoritsas, E., Lecomte, V., Giamarchi, T.: Static fluctuations of a thick one-dimensional interface in the 1+1 directed polymer formulation. Phys. Rev. E. 87, 042406 (2013)

Agoritsas, E., Lecomte, V., Giamarchi, T.: Static fluctuations of a thick one-dimensional interface in the 1+1 directed polymer formulation: numerical study. Phys. Rev. E. 87, 062405 (2013)

Bertini, L., Cancrini, N.: The stochastic heat equation: Feynman–Kac formula and intermittence. J. Stat. Phys. 78, 1377–1401 (1997)

Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1995)

Borodin, A., Corwin, I., Ferrari, P.: Free energy fluctuations for directed polymers in random media in 1 + 1 dimension. Commun. Pure Appl. Math. 67, 1129–1214 (2014)

Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices 1, 1130001 (2012)

Da Prato, G., Debussche, A., Tubaro, L.: A modified Kardar–Parisi–Zhang model. Electron. Commun. Probab. 12, 442–453 (2007)

Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992). xviii+454 pp

Echeverria, P.: A criterion for invariant measures of Markov processes. Z. Wahrsch. Verw. Gebiete 61, 1–16 (1982)

Funaki, T.: Regularity properties for stochastic partial differential equations of parabolic type. Osaka J. Math. 28, 495–516 (1991)

Funaki, T.: A stochastic partial differential equation with values in a manifold. J. Funct. Anal. 109, 257–288 (1992)

Funaki, T.: The scaling limit for a stochastic PDE and the separation of phases. Probab. Theory Relat. Fields 102, 221–288 (1995)

Funaki, T.: Infinitesimal invariance for the coupled KPZ equations, to appear in Memoriam Marc Yor—Séminaire de Probabilités XLVII, Lect. Notes Math. vol. 2137, Springer, Berlin (2015)

Funaki, T., Spohn, H.: Motion by mean curvature from the Ginzburg–Landau $$\nabla \phi $$ ∇ ϕ interface model. Commun. Math. Phys. 185, 1–36 (1997)

Hairer, M.: Solving the KPZ equation. Ann. Math. 178, 559–664 (2013)

Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–475 (1977)

Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)

Kipnis, C., Landim, C.: Scaling Limits of Interacting Particle Systems. Springer, New York (1999)

Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation. Springer, Heidelberg (2012)

Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations, J. Soviet Math., 16, 1233–1277 (1981), translated from Current Problems in Math., 14(Russian), 71–147 (1979)

Major, P.: Multiple Wiener-Itô Integrals, with Applications to Limit Theorems. Lecture Notes in Mathematics, vol. 849. Springer, Berlin (1981)

Mueller, C.: On the support of solutions to the heat equation with noise. Int. J. Probab. Stoch. Process. 37, 225–245 (1991)

Sasamoto, T., Spohn, H.: Superdiffusivity of the 1D lattice Kardar–Parisi–Zhang equation. J. Stat. Phys. 137, 917–935 (2009)

Shiga, T.: Two contrasting properties of solutions for one-dimensional stochastic partial differential equations. Can. J. Math. 46, 415–437 (1994)