KPZ equation, its renormalization and invariant measures
Tóm tắt
Từ khóa
Tài liệu tham khảo
Adams, R.A.: Sobolev Spaces. Academic Press, New York (1975)
Agoritsas, E., Lecomte, V., Giamarchi, T.: Static fluctuations of a thick one-dimensional interface in the 1+1 directed polymer formulation. Phys. Rev. E. 87, 042406 (2013)
Agoritsas, E., Lecomte, V., Giamarchi, T.: Static fluctuations of a thick one-dimensional interface in the 1+1 directed polymer formulation: numerical study. Phys. Rev. E. 87, 062405 (2013)
Bertini, L., Cancrini, N.: The stochastic heat equation: Feynman–Kac formula and intermittence. J. Stat. Phys. 78, 1377–1401 (1997)
Bertini, L., Giacomin, G.: Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183, 571–607 (1995)
Borodin, A., Corwin, I., Ferrari, P.: Free energy fluctuations for directed polymers in random media in 1 + 1 dimension. Commun. Pure Appl. Math. 67, 1129–1214 (2014)
Corwin, I.: The Kardar–Parisi–Zhang equation and universality class. Random Matrices 1, 1130001 (2012)
Da Prato, G., Debussche, A., Tubaro, L.: A modified Kardar–Parisi–Zhang model. Electron. Commun. Probab. 12, 442–453 (2007)
Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992). xviii+454 pp
Echeverria, P.: A criterion for invariant measures of Markov processes. Z. Wahrsch. Verw. Gebiete 61, 1–16 (1982)
Funaki, T.: Regularity properties for stochastic partial differential equations of parabolic type. Osaka J. Math. 28, 495–516 (1991)
Funaki, T.: A stochastic partial differential equation with values in a manifold. J. Funct. Anal. 109, 257–288 (1992)
Funaki, T.: The scaling limit for a stochastic PDE and the separation of phases. Probab. Theory Relat. Fields 102, 221–288 (1995)
Funaki, T.: Infinitesimal invariance for the coupled KPZ equations, to appear in Memoriam Marc Yor—Séminaire de Probabilités XLVII, Lect. Notes Math. vol. 2137, Springer, Berlin (2015)
Funaki, T., Spohn, H.: Motion by mean curvature from the Ginzburg–Landau $$\nabla \phi $$ ∇ ϕ interface model. Commun. Math. Phys. 185, 1–36 (1997)
Hohenberg, P.C., Halperin, B.I.: Theory of dynamic critical phenomena. Rev. Mod. Phys. 49, 435–475 (1977)
Karatzas, I., Shreve, S.E.: Brownian Motion and Stochastic Calculus, 2nd edn. Springer, New York (1991)
Komorowski, T., Landim, C., Olla, S.: Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation. Springer, Heidelberg (2012)
Krylov, N.V., Rozovskii, B.L.: Stochastic evolution equations, J. Soviet Math., 16, 1233–1277 (1981), translated from Current Problems in Math., 14(Russian), 71–147 (1979)
Major, P.: Multiple Wiener-Itô Integrals, with Applications to Limit Theorems. Lecture Notes in Mathematics, vol. 849. Springer, Berlin (1981)
Mueller, C.: On the support of solutions to the heat equation with noise. Int. J. Probab. Stoch. Process. 37, 225–245 (1991)
Sasamoto, T., Spohn, H.: Superdiffusivity of the 1D lattice Kardar–Parisi–Zhang equation. J. Stat. Phys. 137, 917–935 (2009)