K-polystability of Q-Fano varieties admitting Kähler-Einstein metrics

Inventiones mathematicae - Tập 203 Số 3 - Trang 973-1025 - 2016
Robert J. Berman1
1Chalmers University of Technology & University of Gothenburg

Tóm tắt

Từ khóa


Tài liệu tham khảo

Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3, 493–535 (1994)

Berman, R.J.: Berndtsson, B.: Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties. Ann de la Fac des Sci de Toulouse. Série VI. Math. 4(4), (2013)

Berman, R.J., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge-Ampere equations. Publications Math. de l’IHÉS, 117(1), 179–245 (2013)

Berman, R.J., Eyssidieux, P., Boucksom, S., Guedj, V., Zeriahi, A.: Kähler-Einstein metrics and the Kähler-Ricci flow on log Fano varieties. arXiv:1111.7158

Berman, R.J., Hisamoto, T., Nyström, D.W.: Calabi type functionals, test configurations and geodesic rays (article in preparation)

Berman, R.J., Guenancia, H.: Kähler-Einstein metrics on stable varieties and log canonical pairs. Geom. Funct. Anal. 24(6), 1683–1730 (2014)

Berman, R.J., Witt Nystrom, D.: Complex optimal transport and the pluripotential theory of Kähler-Ricci solitons. arXiv:1401.8264

Berndtsson, B.: Curvature of vector bundles associated to holomorphic fibrations. Ann. Math. 169, 531–560 (2009)

Berndtsson, B.: Strict and nonstrict positivity of direct image bundles. Math. Zeitschrift 269(3–4), 1201–1218 (2011)

Berndtsson, B.: A Brunn-Minkowski type inequality for Fano manifolds and the Bando- Mabuchi uniqueness theorem. Inventiones Math. arXiv:1103.0923 (2014)

Berndtsson, B., Paun, M.: Bergman kernels and the pseudoeffectivity of relative canonical bundles. Duke Math. J. 145(2), 341–378 (2008)

Berndtsson, B., Paun, M.: A Bergman kernel proof of the Kawamata subadjunction theorem. arXiv:0804.3884

Campana, F., Guenancia, H., Păun, M.: Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. Annales Scientifiques de l’École Normale Supérieure. série 4 46, fascicule 6 (2013)

Chen, X.: Space of Kähler metrics (IV): on the lower bound of the K-energy. arXiv:0809.4081v2

Chen, X., Tang, Y.: Test configuration and geodesic rays. Géométrie différentielle, physique mathématique, mathématiques et société. I. Astérisque 321, 139–167 (2008)

Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds, I: Approximation of metrics with cone singularities. J. Amer. Math. Soc. 28, 183–197 (2015)

Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds, II: Limits with cone angle less than $$2\pi $$ 2 π . J. Amer. Math. Soc. 28, 199–234 (2015)

Chen, X., Donaldson, S., Sun, S.: Kähler-Einstein metrics on Fano manifolds, III: Limits as cone angle approaches $$2\pi $$ 2 π and completion of the main proof. J. Amer. Math. Soc. 28, 235–278 (2015)

Csiszár, I., Körner, J.: Information Theory: Coding Theorems for Discrete Memoryless Systems. Cambridge University Press, Cambridge (2011)

Darvas, T., He, W.: Geodesic Rays and Kähler-Ricci Trajectories on Fano Manifolds. arXiv:1411.0774

Demailly, J.-P., Kollar, J.: Semi-continuity of complex singularity exponents and Kähler- Einstein metrics on Fano orbifolds. Ann. Sci. École Norm. Sup. 34(4), 525–556 (2001)

Ding, W.Y.: Remarks on the existence problem of positive Kähler-Einstein metrics. Math. Ann 282, 463–471 (1988)

Ding, W.Y., Tian, G.: Kähler-Einstein metrics and the generalized Futaki invariant. Invent. Math. 110(2), 315–335 (1992)

Donaldson, S.K.: Symmetric spaces, Kähler geometry and Hamiltonian dynamics. In: Northern California Symplectic Geometry Seminar, vol. 196 of Amer. Math. Soc. Transl. Ser. 2, pp. 13–33. Amer. Math. Soc., Providence, RI (1999)

Donaldson, S.K.: Scalar curvature and stability of toric varities. J. Differ. Geom. 62, 289–349 (2002)

Donaldson, S. K.: Lower bounds on the Calabi functional. J. Differ. Geom. 70(3), 453–472 (2005)

Donaldson, S.K.: Some numerical results in complex differential geometry. Pure Appl. Math. Q. 5(2), 571–618 (2009). (Special Issue: In honor of Friedrich Hirzebruch)

Donaldson, S.K.: Kahler metrics with cone singularities along a divisor. Essays in mathematics and its applications, pp. 49–79. Springer, Heidelberg (2012)

Donaldson, S.K., Sun, S.: Gromov-Hausdorff limits of Kahler manifolds and algebraic geometry. Acta Math. 213, 63–106

Eyssidieux, P., Guedj, V., Zeriahi, A.: Singular Kähler-Einstein metrics. J. Am. Math. Soc. 22, 607–639 (2009)

Greuel, G.M., Lossen, C., Shustin, E.: Introduction to Singularities and Deformations. Springer, New York (2007)

Guedj, V., Zeriahi, A.: Intrinsic capacities on compact Kähler manifolds. J. Geom. Anal. 15(4), 607–639 (2005)

Guenancia, H., Păun, M.: Conic singularities metrics with prescribed Ricci curvature: the case of general cone angles along normal crossing divisors. arXiv:1307.6375

Elkik, R.: Métriques sur les fibrés d’intersection. Duke Math. J. 61, 303–328 (1990)

He, W.: $${\cal F}$$ F -functional and geodesic stability. arXiv:1208.1020

Jeffres, T.D., Mazzeo, R., Rubinstein, Y.A.: Kähler-Einstein metrics with edge singularities. arXiv:1105.5216 (2011)

Hartshorne, R.: Algebraic Geometry. Graduate Texts in Math, vol. 52. Springer-Verlag, Berlin (2006)

Hisamoto, T.: On the limit of spectral measures associated to a test configuration. Preprint

Kawamata, Y.: Characterization of abelian varieties. Compositio Math. 43(2), 253–276 (1981)

Kawakita, M.: Inversion of adjunction on log canonicity. Invent. Math. 167(1), 129–133 (2007)

Kollar, J.: Singularities of pairs. Algebraic Geom—Santa Cruz. In: Proceedings of Symposia Pure Mathematics 62, Part 1, pp. 221–287. Amer. Math. Soc., Providence, RI (1995)

Kreuzer, M., Skarke, H.: PALP: a package for analyzing lattice polytopes with applications to toric geometry. Comput. Phys. Commun. 157, 87–106 (2004)

Li, C.: Remarks on logarithmic K-stability. arXiv:math/1104042

Li, C., Xu, C.: Special test configurations and K-stability of Fano varieties. Ann. Math. 180, 197–232 (2014). arXiv:1111.5398

Mabuchi, T.: An energy-theoretic approach to the Hitchin-Kobayashi correspondence for manifolds, I. Invent. Math. 159(2), 225–243 (2005). (MR 2116275)

Mabuchi, T.: K-stability of constant scalar curvature polarization. arXiv:0812.4093

Mabuchi, T.: A stronger concept of K-stability. arXiv:0910.4617

Moriwaki, A.: The continuity of Deligne’s pairing. Internat. Math. Res. Notices 19, 1057–1066 (1999)

Morrison, I.: GIT Constructions of Moduli Spaces of Stable Curves and Maps. Riemann Surfaces and Their Moduli Spaces, Surv. Differ. Geom., vol. 14, pp. 315–369. Int. Press, Somerville (2009)

García, Muñóz: E. Fibrés d’intersection. Compositio Math. 124(3), 219–252 (2000)

Kempf, G., Ness, L.: The Length of Vectors in Representation Spaces. Lecture Notes in Math., vol. 732, pp. 233–244. Springer, New York (1978)

Nyström, D.W.: Test configurations and Okounkov bodies. Compos. Math. arXiv:1001.3286 (2010)

Odaka, Y.: A generalization of the Ross-Thomas slope theory. Osaka J. Math. 50(1), 171–185 (2013)

Odaka, Y., Sun, S.: Testing log K-stability by blowing up formalism. arXiv:1112.1353

Odaka, Y., Spotti, S., Sun, S.: Compact moduli spaces of del pezzo surfaces and Kähler-Einstein metrics. arXiv:1210.0858

Odaka, Y.: On the moduli of Kahler-Einstein Fano manifolds. Proceeding of Kinosaki algebraic geometry symposium. arXiv:1211.4833 (2013)

Perelman, G.: The entropy formula for the Ricci flow and its geometric applications.  arXiv:math/0211159

Paul, S., Tian, G.: CM stability and the generalized Futaki invariant I. arXiv:math/0605278 . CM stability and the generalized Futaki invariant II. Astérisque No. 328 (2009)

Paul, S.T.: Hyperdiscriminant polytopes, Chow polytopes, and Mabuchi energy asymptotics. Ann. Math. 175(1), 255–296 (2012)

Păun, M.: Takayama, S: Positivity of twisted relative pluricanonical bundles and their direct images. arXiv:1409.5504

Phong, D.H., Ross, J., Sturm, J.: Deligne pairings and the Knudsen-Mumford expansion. J. Differ. Geom. 78(3), 475–496 (2008)

Phong, D.H., Sturm, J.: Test configurations for K-stability and geodesic rays. J. Symp. Geom. 5, 221–247 (2007)

Phong, D.H., Song, J., Sturm, J., Weinkove, B.: The Moser-Trudinger inequality on Kähler- Einstein manifolds. Am. J. Math. 130(4), 1067–1085 (2008)

Phong, D.H., Sturm, J.: Regularity of geodesic rays and Monge-Ampère equations. Proc. Am. Math. Soc. 138(10), 3637–3650 (2010)

Phong, D.H., Sturm, J.: Lectures on stability and constant scalar curvature. Handbook of geometric analysis, No. 3, Adv. Lect. Math. (ALM), vol. 14, pp. 357–436. Int. Press, Somerville (2010)

Ross, J., Thomas, R.: A study of the Hilbert-Mumford criterion for the stability of projective varieties. J. Algebraic Geom. 16, 201–255 (2007)

Székelyhidi, G.: The partial $$C^{0}$$ C 0 -estimate along the continuity method. arXiv:1310.8471 (2013)

Stoppa, J.: K-stability of constant scalar curvature Kähler manifolds. Adv. Math. 221(4), 1397–1408 (2009)

Stoppa, J.: A note on the definition of K-stability. arXiv:1111.5826

Stoppa, J., Székelyhidi, G.: Relative K-stability of extremal metrics. J. Eur. Math. Soc. (JEMS) 13(4), 899–909 (2011)

Tian, G.: Kähler-Einstein metrics with positive scalar curvature. Invent. Math. 130(1), 1–37 (1997)

Tian, G.: On Calabi’s conjecture for complex surfaces with positive first Chern class. Invent. Math. 101(1), 101–172 (1990)

Tian, G.: Existence of Einstein metrics on Fano manifolds. In: Metric and Differential Geometry Progress in Mathematics, vol. 297, Part 1, pp. 119–159 (2012)

Tian, G., Zhu, X.: Convergence of Kähler-Ricci flow on Fano manifolds, II. arXiv:1102.4798

Tian, G., Zhang, S.: Zhang, Z: Zhu, X: Supremum of Perelman’s entropy and Kähler-Ricci flow on a Fano manifold. arXiv:1107.4018

Tosatti, V.: Families of Calabi-Yau manifolds and canonical singularities. arXiv:1311.4845 (2013)

Zhang, S.: Heights and reductions of semi-stable varieties. Compositio Math. 104(1), 77–105 (1996)

Wang, C.-L.: Curvature properties of the Calabi-Yau moduli. Doc. Math. 8, 577–590 (2003)

Wang, X.: Height and GIT weight. Math. Res. Lett. 19(04), 909–926 (2012)