Kähler hyperbolicity and $L_2$-Hodge theory
Tóm tắt
Từ khóa
Tài liệu tham khảo
[1] M. Anderson, L2-harmonic forms and a conjecture ofDodziuk-Singer, Bull. Amer. Math. Soc. 13 (2) (1985) 163-166.
[2] M. Atiyah, Elliptic operators, discrete groups and Von Neumann algebras, Soc. Math. France, Asterisque 32-33 (1976) 43-47.
[3] W. Ballmann, M. Gromov and V. Schroeder, Manifolds of nonpositive curvature, Progr. Math., Vol. 61, Birkhauser, Boston, 1985.
[4] J. Cheeger and D. Ebin, Comparison theorems in Riemannian geometry, North-Kolland, Amsterdam, 1975.
[5] J. Cheeger and M. Gromov, On the characteristic numbers of complete manifolds of bounded curvature and finite volume, Differential Geometry and Complex Analysis (I. Chavel and H. Farkas, eds.), Springer, Berlin, 1985, 115-155.
[7] J. P. Demailly, Private communication, June, 1989.
[8] M. Gaffney, A special Stokes theorem for Riemannian manifolds, Ann. of Math. 60 (1) (1954) 140-145.
[9] R. E. Green and H. Wu, Function theory on manifolds which possessa pole, Lecture Notes in Math., Vol. 699, Springer, Berlin, 1979, 183-215.
[10] M. Gromov, Hyperbolic manifolds, groups and actions, Ann. of Math. Studies, Vol. 97, Princeton Univ. Press, Princeton, NJ, 1981.
[11] M. Gromov, Hyperbolic manifolds, Large Riemannian manifolds, Lecture Notes in Math., Vol. 1201, Springer, Berlin, 1986, 108-122.
[12] M. Gromov, Hyperbolic manifolds, Hyperbolic groups, Essays in Group Theory (S. M. Gersten, ed.), Springer, Berlin, 1987, 75-265.
[13] M. Gromov, Hyperbolic manifolds, Sur le groupe fondamental d'une variete Kahlerienne, C. R. Acad. Sci. Paris. Ser. I Math. 308 (1989) 67-70.
[14] M. Gromov and B. Lawson, Spin and scalar curvature in the presence of a fundamental group, Ann. of Math. I l l (1980) 209-230.
[15] M. Gromov and B. Lawson, Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Inst. Hautes Etudes Sci. Publ. Math., No. 58 (1983) 83-196.
[16] S. L. Kruskal, Strengthened pseudoconvexity of finite dimensional Teichmller spaces, Preprint of Mathematical Institute in Novosibirsk, 1990.
[17] S. Mori, Cone of curves and Fano 3-folds, Proc. Internat. Congress Math.-Warsaw 1982, North-Holland, Amsterdam, 1984, 747-752.
[18] G. D. Mostow, Strong rigidity of locallysymmetric spaces, Ann. of Math. Stud., Vol. 78, Princeton Univ. Press, Princeton, NJ, 1973.
[19] V. Shokurov, Numerical geometry of algebraic varieties, Proc. Internat. Congress Math., Vol. 1, 2 (Berkeley, 1986), Amer. Math. Soc, Providence, RI, 1987-1986, 672-681.
[21] M. Stern, L2-cohomology of negatively curved Kahler manifold, preprint, Inst. Adv. Study, Princeton, 1989.
[22] W. Thurston, The geometry and topology of ^-manifolds, Princeton Lecture Notes, 1988.
[23] C. Vafa and E. Witten, Eigenvalues inequalities for fermions in gauge theories, Comm. Math. Phys. 95 (3) (1984) 257-277.
[24] A. Weil, Varietes Kahleriennes, Hermann, Paris 1971.