Kähler-Einstein metrics on Fano manifolds. I: Approximation of metrics with cone singularities
Tóm tắt
This is the first of a series of three papers which prove the fact that a
Từ khóa
Tài liệu tham khảo
Bedford, Eric, 1989, Uniqueness for the complex Monge-Ampère equation for functions of logarithmic growth, Indiana Univ. Math. J., 38, 455, 10.1512/iumj.1989.38.38021
Berman, Robert J., 2013, A thermodynamical formalism for Monge-Ampère equations, Moser-Trudinger inequalities and Kähler-Einstein metrics, Adv. Math., 248, 1254, 10.1016/j.aim.2013.08.024
B. Berndtsson, A Brunn-Minkowski type inequality for Fano manifolds and the Bando-Mabuchi uniqueness theorem. arXiv:1103.0923.
Błocki, Zbigniew, 2003, Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., 52, 1697, 10.1512/iumj.2003.52.2346
Calabi, Eugenio, 1958, Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Michigan Math. J., 5, 105
F. Campana, H. Guenancia, and M. Paun, Metrics with cone singularities along normal crossing divisors and holomorphic tensor fields. arXiv:1104.4879.
Cheeger, Jeff, 2000, On the structure of spaces with Ricci curvature bounded below. II, J. Differential Geom., 54, 13
Chen, Xiuxiong, 2000, On the lower bound of the Mabuchi energy and its application, Internat. Math. Res. Notices, 607, 10.1155/S1073792800000337
X-X. Chen, S. Donaldson, and S. Sun, Kähler-Einstein metrics and stability. arXiv:1210.7494. To appear in Int. Math. Res. Not (2013).
Cheng, Shiu Yuen, 1977, On the regularity of the Monge-Ampère equation 𝑑𝑒𝑡(∂²𝑢/∂𝑥ᵢ∂𝑠𝑥ⱼ)=𝐹(𝑥,𝑢), Comm. Pure Appl. Math., 30, 41, 10.1002/cpa.3160300104
Donaldson, S. K., 2012, Kähler metrics with cone singularities along a divisor, 49, 10.1007/978-3-642-28821-0_4
Evans, Lawrence C., 1982, Classical solutions of fully nonlinear, convex, second-order elliptic equations, Comm. Pure Appl. Math., 35, 333, 10.1002/cpa.3160350303
Eyssidieux, Philippe, 2009, Singular Kähler-Einstein metrics, J. Amer. Math. Soc., 22, 607, 10.1090/S0894-0347-09-00629-8
D. Gilbarg and N. Trudinger, Elliptic partial differential equations of second order. Springer, 1998.
T. D. Jeffres, R. Mazzeo, and Y. Rubinstein, Kähler-Einstein metrics with edge singularities. arXiv:1105.5216.
Kołodziej, Sławomir, 1998, The complex Monge-Ampère equation, Acta Math., 180, 69, 10.1007/BF02392879
Kołodziej, Sławomir, 2003, The Monge-Ampère equation on compact Kähler manifolds, Indiana Univ. Math. J., 52, 667, 10.1512/iumj.2003.52.2220
Krylov, N. V., 1982, Boundedly inhomogeneous elliptic and parabolic equations, Izv. Akad. Nauk SSSR Ser. Mat., 46, 487
C. Li and S. Sun, Conical Kähler-Einstein metric revisited. arXiv:1207.5011.
Li, Haozhao, 2008, On the lower bound of the 𝐾-energy and 𝐹-functional, Osaka J. Math., 45, 253
Lu, Yung-chen, 1968, Holomorphic mappings of complex manifolds, J. Differential Geometry, 2, 299
J. Song and X-W. Wang, The greatest Ricci lower bound, conical Einstein metrics and the Chern number inequality. arXiv:1207.4839.
Székelyhidi, Gábor, 2011, Greatest lower bounds on the Ricci curvature of Fano manifolds, Compos. Math., 147, 319, 10.1112/S0010437X10004938
Tian, G., 1990, Complete Kähler manifolds with zero Ricci curvature. I, J. Amer. Math. Soc., 3, 579, 10.2307/1990928