Junction temperature estimation approach based on TSEPs in multichip IGBT modules

Journal of Power Electronics - Tập 22 - Trang 1596-1605 - 2022
Jianxiong Yang1, Yanbo Che1, Li Ran2, Borong Hu3, Mingxing Du4
1School of Electrical and Information Engineering, Tianjin University, Tianjin, China
2School of Engineering, University of Warwick, Coventry, UK
3Department of Engineering, University of Cambridge, Cambridge, UK
4School of Electrical and Electronic Engineering, Tianjin University of Technology, Tianjin, China

Tóm tắt

Power semiconductor chips are parallelly packed in modules to achieve a specific current capacity and power level. An inhomogeneous degradation of the solder layer makes the junction temperature between chips unevenly distributed in multichip modules. The real matters of the junction temperature represented by the terminal electrical characteristics are not known when a junction temperature difference occurs in the internal chip of a multichip IGBT module. This paper analyzes the electrothermal coupling characteristics among the chips in multichip modules and establishes a mathematical model of the electrothermal relationship. To accurately control the different temperature distributions and uneven aging conditions of paralleled chips, two power modules or two discrete devices packaged in a TO-247 are connected in parallel to simulate a multichip power module. The correctness of the proposed electrothermal model and the feasibility of simulating multichip modules are verified through experiments. The findings indicate that the temperature evaluated by the threshold voltage approaches the maximum temperature of the chips inside the module. The junction temperature evaluated by the maximum change rate of the collector–emitter voltage and that of the collector current approach are used to obtain the average temperature.

Tài liệu tham khảo

He, X.N., Wang, R.C., Wu, J.D., et al.: Info character of power electronic conversion and control with power discretization to digitization then intelligentization. Proc. CSEE 40(5), 1579–1587 (2020) Chen, X.X., Liu, J.J., Deng, Z.F., et al.: A diagnosis strategy for multiple IGBT open-circuit faults of modular multilevel converters. IEEE Trans. Power Elec. 36(1), 191–203 (2021) Hakim, T., Cherifa, T., Mohamed, B., et al.: Experimental investigation of NBTI degradation in power VDMOS transistors under low magnetic field. IEEE Trans. Devi. Mater. Reliab. 17(1), 99–105 (2017) Ninoslav, S., Danijel, D., Ivica, M., et al.: Impact of negative bias temperature instabilities on lifetime in p-channel power VDMOSFETs. In: 2007 8th International Conference on Telecommunications in Modern Satellite, Cable and Broadcasting Services (2007) Snežana, M.D., Ivica, D., et al.: Annealing of radiation-induced defects in burn-in stressed power VDMOSFETs. Nuclear Tech. Rad. Prot. 26(1), 18–24 (2011) Dupont, L., Avenas, Y., Jeannin, P.: Comparison of junction temperature evaluations in a power IGBT module using an IR camera and three thermosensitive electrical parameters. IEEE Trans. Ind. Appl. 49(4), 1599–1608 (2013) Yang, S.Y., Xiang, D.W., Bryant, A., et al.: Condition monitoring for device reliability in power electronic converters: a review. IEEE Trans. Power Electon. 25(11), 2734–2752 (2011) Yang, S.Y., Bryant, A., Mawby, P., et al.: An industry-based survey of reliability in power electronic converters. IEEE Trans. Ind. Appl. 47(3), 1441–1451 (2011) Fabis, P.M., Shum, D., Windischmann, H.: Thermal modeling of diamond-based power electronics packaging. In: Fifteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium (1999) Chen, Y., Lei, G.Y., Lu, G.Q., et al.: "High-temperature characterizations of a half-Bridge wire-bondless SiC MOSFET module. IEEE J. Electron Dev. Soc. 9, 966–971 (2021) Li, J.M., Zhou, Y.G., Qi, Y.D., et al.: In-situ measurement of junction temperature and light intensity of light emitting diodes with an internal sensor unit. IEEE Electron Dev. Lett. 36(10), 1082–1084 (2015) Soldati, A., Delmonte, N., Cova, P., et al.: Device-sensor assembly FEA modeling to support kalman-filter-based junction temperature monitoring. IEEE J. Emerg. Select. Top. Power Electron. 7(3), 1736–1747 (2019) Baker, N., Dupont, L., Nielsen, S.M., et al.: IR camera validation of IGBT junction temperature measurement via peak gate current. IEEE Trans. Power Electron 32(4), 3099–3111 (2017) Eleffendi, M.A., Johnson, M.: Application of kalman filter to estimate junction temperature in IGBT power modules. IEEE Trans. Power Electron 31(2), 1576–1587 (2016) Hu, Z., Du, M.X., Wei, K.X., et al.: An adaptive thermal equivalent circuit model for estimating the junction temperature of IGBTs. IEEE J. Emerg. Select. Top. Power Electron. 7(1), 392–403 (2019) Avenas, Y., Dupont, L., Khatir, Z.: Temperature measurement of power semiconductor devices by thermo-sensitive electrical parameters: a review. IEEE Trans. Power Electron 27(6), 3081–3092 (2012) Chen, M., Hu, A., Tang, Y., et al.: Modeling analysis of IGBT thermal model. High Volt. Eng. 37(2), 453–459 (2011) Sun, P., Zhao, Z., Cai, Y., et al.: Analytical model for predicting the junction temperature of chips considering the internal electrothermal coupling inside SiC metal-oxide-semiconductor field-effect transistor modules. IET Power Electron. 13(3), 436–444 (2020) Liu, J.C., Zhang, G.G., Chen, Q., et al.: In situ condition monitoring of IGBTs based on the miller plateau duration. IEEE Trans. Power Electron. 34(1), 769–782 (2019) Bryant, A., Yang, S.Y., Mawby, P.: Investigation into IGBT dV/dt during turn-off and its temperature dependence. IEEE Trans. Power Electron. 26(10), 3019–3031 (2011) Xu, Z.X., Xu, F., Wang, F.: Junction temperature measurement of IGBTs using short-circuit current as a temperature-sensitive electrical parameter for converter prototype evaluation. IEEE Trans. Ind. Electron. 62(6), 3419–3429 (2015) Luo, H.Z., Chen, Y.X., Sun, P.F., et al.: Junction temperature extraction approach with turn-off delay time for high-voltage high-power IGBT modules. IEEE Trans. Power Electron. 31(7), 5122–5132 (2016) Zeng, G., Cao, H., Chen, W., et al.: Difference in device temperature determination using p-n-junction forward voltage and gate threshold voltage. IEEE Trans. Power Electron. 34(3), 2781–2793 (2019) Baker, N., Iannuzzo, F.: The temperature dependence of the flatband voltage in high power IGBTs. IEEE Trans. Ind. Electron. 66(7), 5581–5584 (2019) Baker, N., Munk-Nielsen, S., Iannuzzo, F., et al.: IGBT junction temperature measurement via peak gate current. IEEE Trans. Power Electron. 31(5), 3784–3793 (2016) Peralta, J., Saad, H., Dennetiere, S., et al.: Detailed and averaged models for a 401-Level MMC-HVDC system. IEEE Trans. Power Del. 27(3), 1501–1508 (2012) Hu, B.R., Hu, Z.D., Ran, L., et al.: Heat-flux-based condition monitoring of multichip power modules using a two-stage neural network. IEEE Trans. Power Electron. 36(7), 7489–7500 (2021) Guo, Y.X., Wang, X.M., Zhang, B.: Improved IGBT module junction-temperature extraction algorithm and experiment. J. Power Supply 19(1), 205–214 (2021) Lai, W., Chen, M.Y., Ran, L., et al.: Small junction temperature cycles on die-attach solder layer in IGBT. In: 2015 17th European Conference on Power Electronics and Applications (2015) Yang, J.X., Che, Y.B., Ran, L., et al.: Evaluation of frequency and temperature dependence of power losses difference in parallel IGBTs. IEEE Access 8, 104074–104084 (2020) Chen, C.L., Al-Greer, M., Jia, C.J., et al.: Localization and detection of bond wire faults in multichip IGBT power modules. IEEE Trans. Power Electron 35(8), 7804–7815 (2020)