Jumps in Besov spaces and fine properties of Besov and fractional Sobolev functions

Springer Science and Business Media LLC - Tập 63 - Trang 1-49 - 2024
Paz Hashash1, Arkady Poliakovsky1
1Ben-Gurion University of the Negev, Be'er Sheva, Israel

Tóm tắt

In this paper we analyse functions in Besov spaces $$B^{1/q}_{q,\infty }(\mathbb {R}^N,\mathbb {R}^d),q\in (1,\infty )$$ , and functions in fractional Sobolev spaces $$W^{r,q}(\mathbb {R}^N,\mathbb {R}^d),r\in (0,1),q\in [1,\infty )$$ . We prove for Besov functions $$u\in B^{1/q}_{q,\infty }(\mathbb {R}^N,\mathbb {R}^d)$$ the summability of the difference between one-sided approximate limits in power q, $$|u^+-u^-|^q$$ , along the jump set $$\mathcal {J}_u$$ of u with respect to Hausdorff measure $$\mathcal {H}^{N-1}$$ , and establish the best bound from above on the integral $$\int _{\mathcal {J}_u}|u^+-u^-|^qd\mathcal {H}^{N-1}$$ in terms of Besov constants. We show for functions $$u\in B^{1/q}_{q,\infty }(\mathbb {R}^N,\mathbb {R}^d),q\in (1,\infty )$$ that 0.1 $$\begin{aligned} \liminf \limits _{\varepsilon \rightarrow 0^+}\frac{1}{\varepsilon ^N}\int _{B_{\varepsilon }(x)} |u(z)-u_{B_{\varepsilon }(x)}|^qdz=0 \end{aligned}$$ for every x outside of a $$\mathcal {H}^{N-1}$$ -sigma finite set. For fractional Sobolev functions $$u\in W^{r,q}(\mathbb {R}^N,\mathbb {R}^d)$$ we prove that 0.2 $$\begin{aligned} \lim _{\varepsilon \rightarrow 0^+}\frac{1}{\varepsilon ^N}\int _{B_{\varepsilon }(x)}\frac{1}{\varepsilon ^N}\int _{B_{\varepsilon }(x)} |u\big (z\big )-u(y)|^qdzdy=0 \end{aligned}$$ for $$\mathcal {H}^{N-rq}$$ a.e. x, where $$q\in [1,\infty )$$ , $$r\in (0,1)$$ and $$rq\le N$$ . We prove for $$u\in W^{1,q}(\mathbb {R}^N),1

Tài liệu tham khảo

Adams, D.R., Hedberg, L.I.: Function Spaces and Potential Theory, Grundlehren der mathematischen Wissenschaften (GL, volume 314). Springer, Berlin (1996) Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000) Assouad, P.: Plongements lipschitziens dans \(\mathbb{R} ^n\). Bull. Soc. Math. Fr. 111(4), 66 (2022) Bourgain, J., Brezis, H., Mironescu, P.: Another Look at Sobolev Spaces, pp. 439–455 (2001) Dávila, J.: On an open question about functions of bounded variation. Calc. Var. Part. Differ. Equ. 15(4), 519–527 (2002) De-Lellis, C., Otto, F.: Structure of entropy solutions to the Eikonal equation. J. Eur. Math. Soc. 5, 107–145 (2022) Del Nil, G.: Rectifiability of the jump set of locally integrable functions. Ann. Sc. Norm. Super. Pisa Cl. Sci. XXII(5), 1233–1240 (2021) Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bulletin des sciences mathématiques 136(5), 521–573 (2012) Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions. CRC Press, Boca Raton (2015) Federer, H.: Geometric Measure Theory. Springer, Berlin (1969) Ghiraldin, F., Lamy, X.: Optimal Besov differentiability for entropy solutions of the Eikonal equation. Commun. Pure Appl. Math. 73(2), 317–349 (2020) Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, Berlin (2001) Kinnunen, J.: Sobolev Spaces. Aalto University, Department of Mathematics and Systems Analysis (2017) Lamy, X., Marconi, E.: On Lebesgue points of entropy solutions to the Eikonal equation. Proc. R. Soc. Edinb. Sect. A Math. 66, 1–13 (2023) Leoni, G.: A First Course in Sobolev Spaces. American Mathematical Society, Philadelphia (2017) Maz’ya, V.: Sobolev Spaces. Springer, Berloin (2013) Poliakovsky, A.: Jump detection in Besov spaces via a new BBM formula. Applications to Aviles-Giga type functionals. Commum. Contemp. Math. 20(7), 1750096 (2018) Ziemer, W.P.: Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, vol. 120. Springer, Berlin (2012)