Jumping with variably scaled discontinuous kernels (VSDKs)
Tóm tắt
In this paper we address the problem of approximating functions with discontinuities via kernel-based methods. The main result is the construction of discontinuous kernel-based basis functions. The linear spaces spanned by these discontinuous kernels lead to a very flexible tool which sensibly or completely reduces the well-known
Từ khóa
Tài liệu tham khảo
Bozzini, M., Lenarduzzi, L., Rossini, M., Schaback, R.: Interpolation with variably scaled kernels. IMA J. Numer. Anal. 35, 199–219 (2015)
Canny, J.F.: A computational approach to edge detection. IEEE TPAMI 8, 34–43 (1986)
Cavoretto, R., De Rossi, A.: A trivariate interpolation algorithm using a cube-partition searching procedure. SIAM J. Sci. Comput. 37, A1891–A1908 (2015)
Cavoretto, R., De Marchi, S., De Rossi, A., Perracchione, E., Santin, G.: Partition of unity interpolation using stable kernel-based techniques. Appl. Numer. Math. 116, 95–107 (2017)
De Marchi, S.: On optimal center locations for radial basis function interpolation: computational aspects. Rend. Sem. Mat. Univ. Pol. Torino 61, 343–358 (2003)
De Marchi, S., Erb, W., Marchetti, F.: Spectral filtering for the reduction of the Gibbs phenomenon for polynomial approximation methods on Lissajous curves with applications in MPI. Dolomit. Res. Notes Approx. 10, 128–137 (2017)
De Marchi, S., Erb, W., Marchetti, F., Perracchione, E., Rossini, M.: Shape-driven interpolation with discontinuous kernels: error analysis, edge extraction and applications in magnetic particle imaging (preprint) (2019)
De Marchi, S., Marchetti, F., Perracchione, E., Poggiali, D.: Polynomial interpolation via mapped bases without resampling. J. Comput. Appl. Math. 364, 112347 (2020)
De Marchi, S., Martínez, A., Perracchione, E.: Fast and stable rational RBF-based partition of unity interpolation. J. Comput. Appl. Math. 349, 331–343 (2019)
De Marchi, S., Santin, G.: Fast computation of orthonormal basis for RBF spaces through Krylov space methods. BIT 55, 949–966 (2015)
De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23, 317–330 (2005)
Entekhabi, D., et al.: SMAP Handbook-Soil Moisture Active Passive s.l. JPL Publication, Pasadena (2014)
Fasshauer, G.E., McCourt, M.J.: Kernel-Based Approximation Methods Using Matlab. World Scientific, Singapore (2015)
Fornberg, B., Flyer, N.: The Gibbs Phenomenon in Various Representations and Applications, Chapter The Gibbs Phenomenon for Radial Basis Functions. Sampling Publishing, Potsdam (2008)
Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33, 869–892 (2011)
Fornberg, B., Wright, G.: Stable computation of multiquadric interpolants for all values of the shape parameter. Comput. Math. Appl. 48, 853–867 (2004)
Jakobsson, S., Andersson, B., Edelvik, F.: Rational radial basis function interpolation with applications to antenna design. J. Comput. Appl. Math. 233, 889–904 (2009)
Jung, J.H.: A note on the Gibbs phenomenon with multiquadric radial basis functions. Appl. Numer. Math. 57, 213–219 (2007)
Jung, J.H., Durante, V.: An iteratively adaptive multiquadric radial basis function method for detection of local jump discontinuities. Appl. Numer. Math. 59, 1449–1466 (2009)
Jung, J.H., Gottlieb, S., Kim, S.: Iterative adaptive RBF methods for detection of edges in two dimensional functions. Appl. Numer. Math. 61, 77–91 (2011)
Larsson, E., Lehto, E., Heryudono, A.R.H., Fornberg, B.: Stable computation of differentiation matrices and scattered node stencils based on Gaussian radial basis functions. SIAM J. Sci. Comput. 33, 869–892 (2013)
Perracchione, E., Polato, M., Tran, D., Piazzon, F., Aiolli, F., De Marchi, S., Kollet, S., Montzka, C., Sperduti, A., Vianello, M., Putti, M.: Modelling and processing services and tools, 2018, GEO Essential Deliverable 1.3. http://www.geoessential.eu/wp-content/uploads/2019/01/GEOEssential-D_1.3_final.pdf
Piazzon, F., Sommariva, A., Vianello, M.: Caratheodory–Tchakaloff least squares, sampling theory and applications. In: IEEE Xplore Digital Library, p. 12017 (2017)
Romani, L., Rossini, M., Schenone, D.: Edge detection methods based on RBF interpolation. J. Comput. Appl. Math. 349, 532–547 (2019)
Rossini, M.: Interpolating functions with gradient discontinuities via variably scaled kernels. Dolom. Res. Notes Approx. 11, 3–14 (2018)
Sarra, S.A.: Digital total variation filtering as postprocessing for radial basis function approximation methods. Comput. Math. Appl. 52, 1119–1130 (2006)
Sarra, S.A., Kansa, E.J.: Multiquadric Radial Basis Function Approximation Methods for the Numerical Solution of Partial Differential Equations. Tech Science Press, New York (2010)
Schaback, R., Wendland, H.: Approximation by positive definite kernels. In: Advanced Problems in Constructive Approximation, Basel, pp. 203–222 (2003)
Sharifi, M., Fathy, M., Mahmoudi, M.T.: A classified and comparative study of edge detection algorithms. In: Proceedings of the International Conference on Information Technology: Coding and Computing, Las Vegas, USA, pp. 117–120 (2002)
Wendland, H.: Scattered Data Approximation, Cambridge Monographs on Applied Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005)