Judd-Ofelt analysis and luminescence properties of newly fabricated Dy3+ infused calcium sulfo-phospho-borate glasses for photonics applications
Tài liệu tham khảo
Fu, 2022, Intense and broadband mid-infrared emission by nano-crystallization of rare‐earth doped oxyfluoride glass-ceramic, J. Alloy. Compd., 900, 10.1016/j.jallcom.2021.163413
Gao, 2023, Luminescence, optical and temperature sensitive characteristics of Tm3+/Yb3+ doped fluoride phosphosilicate glass ceramics, Ceram. Int.
Rao, 2022, Spectroscopic characterizations of Dy3+ ions doped phosphate glasses for epoxy-free white LED applications, Opt. Mater., 132
Thabit, 2023, Physical, optical and spectroscopic characteristics investigation for doped Dy3+ borate glass matrix, J. Non-Cryst. Solids, 608, 10.1016/j.jnoncrysol.2023.122258
S. Xu, J. Fu, X. Liu, M. Yuan, C. Zhang, H. Wang, S. Cui, Analysis of thermal chromaticity stability, energy transfer and colour tunablity of Dy3+-Eu3+ doped BBZL glasses for high-power W-LED applications, Ceram. Int., vol. 49(no. 3), 2023, pp. 5228–38.
Babu, 2018, Luminescence properties of Dy3+-doped alkali lead alumino borosilicate glasses, Ceram. Int., 44, 9080, 10.1016/j.ceramint.2018.02.115
Fatima, 2022, Photoluminescence properties of Dy3+ doped Sb2O3-Na2O-B2O3 glasses for laser applications, Mater. Today: Proc., 62, 5563, 10.1016/j.matpr.2022.04.546
Raj, 2023, Concentration dependent Dy3+-doped lithium fluoro borotellurophosphate glasses’ structural and optical investigations for white light emission under UV excitation for solid-state lighting applications, Phys. B: Condens. Matter, 651
Bassam, 2023, Physical, structural, elastic and optical investigations on Dy3+ ions doped boro-tellurite glasses for radiation attenuation application, Radiat. Phys. Chem., 206, 10.1016/j.radphyschem.2023.110798
Alqarni, 2023, Insights into visible luminescence and energy transfer mechanism of Eu3+/Dy3+ co-doped dolo-telluro-borate glasses, Opt. Mater., 137, 10.1016/j.optmat.2023.113617
Ahmad, 2020, Physical, thermal and absorption traits of lithium strontium zinc borate glasses: sensitiveness on Dy3+ doping, J. Alloy. Compd., 844, 10.1016/j.jallcom.2020.156176
Bulus, 2017, The role of dysprosium ions on the physical and optical properties of lithium-borosulfophosphate glasses, Int. J. Mod. Phys. B, 31, 10.1142/S0217979217501016
Alqarni, 2019, Intense red and green luminescence from holmium activated zinc-sulfo-boro-phosphate glass: Judd-Ofelt evaluation, J. Alloy. Compd., 808, 10.1016/j.jallcom.2019.151706
Alqarni, 2020, Tailored structures and dielectric traits of holmium ion-doped zinc-sulpho-boro-phosphate glass ceramics, Ceram. Int., 46, 3282, 10.1016/j.ceramint.2019.10.034
Ahmad, 2020, Spectroscopic characteristics of Dy3+ impurities–doped borate-based glasses: Judd–Ofelt calculation, Mater. Chem. Phys., 253, 10.1016/j.matchemphys.2020.123386
Karki, 2019, Physical, optical and luminescence properties of the Dy3+ doped barium borophosphate glasses, J. Non-Cryst. Solids, 521, 10.1016/j.jnoncrysol.2019.119483
Hamza, 2019, Physical properties, ligand field and Judd-Ofelt intensity parameters of bio-silicate borotellurite glass system doped with erbium oxide, J. Lumin., 207, 497, 10.1016/j.jlumin.2018.11.038
Khaidir, 2019, Optical band gap and photoluminescence studies of Eu3+-doped zinc silicate derived from waste rice husks, Optik, 182, 486, 10.1016/j.ijleo.2019.01.061
Sendova, 2021, Band gap analysis and correlation with glass structure in phosphate glasses melted with various allotropes of carbon, Chem. Phys., 547, 10.1016/j.chemphys.2021.111207
Mallur, 2015, Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses, Mater. Res. Bull., 68, 27, 10.1016/j.materresbull.2015.03.033
Mott, 1970, Conduction in non-crystalline systems: IV. Anderson localization in a disordered lattice, Philos. Mag., 22, 7, 10.1080/14786437008228147
Bulus, 2019, Enhanced elastic and optical attributes of boro-telluro-dolomite glasses: role of CeO2 doping, Ceram. Int., 45, 18648, 10.1016/j.ceramint.2019.06.089
Elazoumi, 2018, Effect of PbO on optical properties of tellurite glass, Results Phys., 8, 16, 10.1016/j.rinp.2017.11.010
Al-Hadeethi, 2019, Investigations of the physical, structural, optical and gamma-rays shielding features of B2O3–Bi2O3–ZnO–CaO glasses, Ceram. Int., 45, 20724, 10.1016/j.ceramint.2019.07.056
Bulus, 2020, Europium-doped boro-telluro-dolomite glasses for red laser applications: basic insight into spectroscopic traits, J. Non-Cryst. Solids, 534, 10.1016/j.jnoncrysol.2020.119949
Shahmoradi, 2019, Growth of silver nanoparticles within the tellurovanadate amorphous matrix: optical band gap and band tailing properties, beside the Williamson-Hall estimation of crystallite size and lattice strain, Ceram. Int., 45, 7857, 10.1016/j.ceramint.2019.01.094
Souri, 2017, ZnSe and copper-doped ZnSe nanocrystals (NCs): optical absorbance and precise determination of energy band gap beside their exact optical transition type and Urbach energy, Curr. Appl. Phys., 17, 41, 10.1016/j.cap.2016.10.008
A. Marzuki, W.M.S. Djeksadipura, V. Suryanti, D.E., Fausta, A. Saraswati, G.T. Singgih, Compositional dependence of density and refractive index in borotellurite glass, in: J. Phys.: Conf. Ser., vol. 1912(no. 1), 2021, p. 012026. IOP Publishing.
Usman, 2018, Influence of Ho3+ ions on structural and optical properties of zinc borotellurite glass system, J. Non-Cryst. Solids, 483, 18, 10.1016/j.jnoncrysol.2017.12.040
Vijayakumar, 2018, Silver (Ag) nanoparticles enhanced luminescence properties of Dy3+ ions in borotellurite glasses for white light applications, Spectrochim. Acta Part A: Mol. Biomol. Spectrosc., 204, 537, 10.1016/j.saa.2018.06.092
Gokce, 2019, Development of Eu3+ doped bismuth germanate glasses for red laser applications, J. Non-Cryst. Solids, 505, 272, 10.1016/j.jnoncrysol.2018.11.011
Koçyiğit, 2023, Luminescence characteristics of Dy3+ doped sodium alumina borate glass: role of silver, J. Phys. D: Appl. Phys., 56, 10.1088/1361-6463/acb5ad
D’Silva, 2023, Structural and optical studies on various concentrations of Dy3+-doped lead fluoro-borotellurophosphate glasses for white light and solid-state light applications, J. Mater. Sci.: Mater. Electron., 34, 212
Carnall, 1968, Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+, J. Chem. Phys., 49, 4424, 10.1063/1.1669893
El-Maaref, 2017, Optical characterizations and Judd-Ofelt analysis of Dy3+ doped borosilicate glasses, Opt. Mater., 72, 169, 10.1016/j.optmat.2017.05.062
Kumar, 2020, Judd-Ofelt parameterization and luminescence characterization of Dy3+ doped oxyfluoride lithium zinc borosilicate glasses for lasers and w-LEDs, J. Non-Cryst. Solids, 544
Jørgensen, 1964, Hypersensitive pseudoquadrupole transitions in lanthanides, Mol. Phys., 8, 281, 10.1080/00268976400100321
Zhu, 2022, Spectroscopic characteristics of Dy3+-doped Ca2Al2SiO7 single crystal for potential use in solid-state yellow lasers, J. Lumin., 245, 10.1016/j.jlumin.2022.118787
Chen, 2021, A novel yellow laser candidate: Dy3+ doped Ca3NbGa3Si2O14 crystal, J. Cryst. Growth, 564, 10.1016/j.jcrysgro.2021.126114
Talewar, 2019, Near UV based Dy3+ ions doped alkaline-earth chloro borate glasses for white LED’s and visible lasers, Opt. Laser Technol., 119, 10.1016/j.optlastec.2019.105646
Rao, 2015, Optical spectroscopy of Dy3+ doped borate glasses for luminescence applications, J. Mol. Struct., 1094, 274, 10.1016/j.molstruc.2015.04.015
Venugopal, 2021, Dy3+ doped B2O3–Li2O–CaO–CaF2 glass for efficient white light emitting sources, J. Non-Cryst. Solids, 554, 10.1016/j.jnoncrysol.2020.120604
Babu, 2016, Effect of Dy3+ ions concentration on optical properties of lead borosilicate glasses for white light emission, Optik, 127, 3121, 10.1016/j.ijleo.2015.12.018
Li, 2019, Dy3+ doped tellurium-borate glass phosphors for laser-driven white illumination, J. Lumin., 206, 70, 10.1016/j.jlumin.2018.10.016
Kashif, 2022, Cool white light emission from Dy3+-doped SiO2–Bi2O3–Ga2O3–B2O3-GeO2-TeO2 glasses: structural and spectroscopic properties, Mater. Sci. Eng.: B, 275, 10.1016/j.mseb.2021.115488
M. Mariyappan, K. Marimuthu, Concentration dependent spectroscopic properties of Dy3+ ions doped boro-phosphate glasses, in: DAE SOLID STATE PHYSICS SYMPOSIUM 2015, AIP Publishing, 2016.
Sun, 2010, Spectroscopic properties and simulation of white-light in Dy3+-doped silicate glass, J. Non-Cryst. Solids, 356, 98, 10.1016/j.jnoncrysol.2009.10.009
Huang, 1990, Concentration dependence of sensitizer fluorescence intensity in energy transfer, Chin. J. Lumin., 11, 1
Lodi, 2019, Dy3+ doped calcium boroaluminate glasses and Blue Led for smart white light generation, J. Lumin., 207, 378, 10.1016/j.jlumin.2018.11.045
Chandrappa, 2022, A critical review and future prospects of Dy3+-doped glasses for white light emission applications, Optik, 10.1016/j.ijleo.2022.169583
Annapoorani, 2017, Investigations on the optical properties of Dy3+ ions doped potassium aluminiumtelluroborate glasses for white light applications, J. Non-Cryst. Solids, 476, 128, 10.1016/j.jnoncrysol.2017.09.038
Alvarez-Ramos, 2021, Study of the optical properties and cross relaxation process of Dy3+ under simultaneous UV-IR excitation in tellurite glasses, J. Lumin., 233, 10.1016/j.jlumin.2020.117874
Tuyen, 2019, An in-depth study of the Judd-Ofelt analysis, spectroscopic properties and energy transfer of Dy3+ in alumino-lithium-telluroborate glasses, J. Lumin., 210, 435, 10.1016/j.jlumin.2019.03.009
Rudramamba, 2019, Optical properties of Sm3+ doped strontium bismuth borosilicate glasses for laser applications, Opt. Mater., 89, 68, 10.1016/j.optmat.2018.12.048
George, 2019, Judd-Ofelt parametrization and radiative analysis of Dy3+ ions doped sodium bismuth strontium phosphate glasses, J. Lumin., 215, 10.1016/j.jlumin.2019.116693
Reddy, 2015, A review on optical and photoluminescence studies of RE3+ (RE = Sm, Dy, Eu, Tb and Nd) ions doped LCZSFB glasses, Renew. Sustain. Energy Rev., 51, 566, 10.1016/j.rser.2015.06.025
Alqarni, 2023, Enhanced spectroscopic traits of Eu3+/Dy3+ co-doped doro-telluro-borate glasses: effect of silver nanoparticles embedment, J. Non-Cryst. Solids, 608, 10.1016/j.jnoncrysol.2023.122238
Griebenow, 2023, Tuning the fluorescence of Dy3+ via the structure of borophosphate glasses, Sci. Rep., 13, 1919, 10.1038/s41598-023-28941-1
Mariselvam, 2021, Synthesis and luminescence properties of Eu3+ doped potassium titano telluroborate (KTTB) glasses for red laser applications, J. Lumin., 230, 10.1016/j.jlumin.2020.117735
Shasmal, 2019, White light-emitting Dy3+-doped transparent chloroborosilicate glass: synthesis and optical properties, J. Asian Ceram. Soc., 7, 42, 10.1080/21870764.2018.1555883
Bharathi, 2022, Turning of luminescence properties of Ba2V2O7 phosphors by co-doping Eu3+/Dy3+ ions, Bull. Mater. Sci., 45, 172, 10.1007/s12034-022-02741-1
Jha, 2017, Structural and emission properties of Eu3+‐doped alkaline earth zinc‐phosphate glasses for white LED applications, J. Am. Ceram. Soc., 100, 1402, 10.1111/jace.14668
Kindrat, 2019, Effect of silver co-doping on enhancement of the Sm3+ luminescence in lithium tetraborate glass, J. Lumin., 213, 290, 10.1016/j.jlumin.2019.05.045
Luewarasirikul, 2017, White light emission of dysprosium doped lanthanum calcium phosphate oxide and oxyfluoride glasses, Opt. Mater., 66, 559, 10.1016/j.optmat.2017.02.049
Mukamil, 2022, Spectroscopic investigation of dysprosium doped bismuth-borate glasses for white light application, Opt. Mater., 127, 10.1016/j.optmat.2022.112291
Huerta, 2020, White, yellow and reddish-orange light generation in lithium-aluminum-zinc phosphate glasses co-doped with Dy3+/Tb3+ and tri-doped with Dy3+/Tb3+/Eu3+, J. Lumin., 219, 10.1016/j.jlumin.2019.116882
Sójka, 2023, Mid-infrared emission from Dy3+ doped fluoroindate glass fiber, Ceram. Int., 10.1016/j.ceramint.2023.03.075
Uma, 2018, Effect of ZnO on the spectroscopic properties of Dy3+ doped zinc telluroborate glasses for white light generation, J. Non-Cryst. Solids, 498, 386, 10.1016/j.jnoncrysol.2018.03.022
Gökçe, 2019, Spectroscopic investigations of Dy3+ doped borogermanate glasses for laser and wLED applications, Opt. Mater., 89, 568, 10.1016/j.optmat.2019.02.004