Joint user association and resource partition for downlink-uplink decoupling inmulti-tier HetNets

Zhejiang University Press - Tập 18 - Trang 817-829 - 2017
Zhi-yong Feng1, Ze-bing Feng1, T. Aaron Gulliver2
1MOE Key Laboratory of Universal Wireless Communications, Beijing University of Posts and Telecommunications, Beijing, China
2Department of Electrical and Computer Engineering, University of Victoria, Victoria, Canada

Tóm tắt

Traditional cellular networks require the downlink (DL) and uplink (UL) of mobile users (MUs) to be associated with a single base station (BS). However, the power gap between BSs and MUs in different transmission environments results in the BS with the strongest downlink differing from the BS with the strongest uplink. In addition, the significant increase in the number of wireless machine type communication (MTC) devices accessing cellular networks has created a DL/UL traffic imbalance with higher traffic volume on the uplink. In this paper, a joint user association and resource partition framework for downlink-uplink decoupling (DUDe) is developed for a tiered heterogeneous cellular network (HCN). Different from the traditional association rules such as maximal received power and range extension, a coalition game based scheme is proposed for the optimal user association with DUDe. The stability and convergence of this scheme are proven and shown to converge to a Nash equilibrium at a geometric rate. Moreover, the DL and UL optimal bandwidth partition for BSs is derived based on user association considering fairness. Extensive simulation results demonstrate the effectiveness of the proposed scheme, which enhances the sum rate compared with other user association strategies.

Tài liệu tham khảo

Andrews, J.G., 2013. Seven ways that HetNets are a cellular paradigm shift. IEEE Commun. Mag., 51(3): 136–144. http://dx.doi.org/10.1109/MCOM.2013.6476878 Boccardi, F., Andrews, J., Elshaer, H., et al., 2016. Why to decouple the uplink and downlink in cellular networks and how to do it. IEEE Commun. Mag., 54(3): 110–117. http://dx.doi.org/10.1109/MCOM.2016.7432156 Brémaud, P., 1999. Markov Chains: Gibbs Fields, Monte Carlo Simulation, and Queues. Springer-Verlag, New York, NY. Dhillon, H.S., Ganti, R.K., Baccelli, F., et al., 2012. Modeling and analysis of k-tier downlink heterogeneous cellular networks. IEEE J. Sel. Areas Commun., 30(3): 556–560. http://dx.doi.org/10.1109/JSAC.2012.120405 Dhillon, H.S., Ganti, R.K., Andrews, J.G., 2013. Loadaware modeling and analysis of heterogeneous cellular networks. IEEE Trans. Wirel. Commun., 12(4): 1666–1677. http://dx.doi.org/10.1109/TWC.2013.13.120485 ElSawy, H., Hossain, E., Haenggi, M., 2013. Stochastic geometry for modeling, analysis, and design of multitier and cognitive cellular wireless networks: a survey. IEEE Commun. Surv. Tutor., 15(3): 996–1019. http://dx.doi.org/10.1109/SURV.2013.052213.00000 Elshaer, H., Boccardi, F., Dohler, M., et al., 2014. Downlink and uplink decoupling: a disruptive architectural design for 5G networks. Proc. IEEE Globecom, p.1798–1803. http://dx.doi.org/10.1109/GLOCOM.2014.7037069 Feng, Z., Feng, Z., Li, W., et al., 2014. Downlink and uplink splitting user association in two-tier heterogeneous cellular networks. Proc. IEEE Globecom, p.4659–4664. http://dx.doi.org/10.1109/GLOCOM.2014.7037543 Fooladivanda, D., Rosenberg, C., 2013. Joint resource allocation and user association for heterogeneous wireless cellular networks. IEEE Trans. Wirel. Commun., 12(1): 248–257. http://dx.doi.org/10.1109/TWC.2012.121112.120018 Ge, X., Tu, S., Mao, G., et al., 2016. 5G ultra-dense cellular networks. IEEE Wirel. Commun., 23(1): 72–79. http://dx.doi.org/10.1109/MWC.2016.7422408 Jiang, L., Sha, X., Wu, X., et al., 2016. A novel resource allocation algorithm based on downlink and uplink decouple access scheme in heterogeneous networks. China Commun., 13(6): 1673–5447. http://dx.doi.org/10.1109/CC.2016.7513200 Jo, H.S., Sang, Y.J., Xia, P., et al., 2012. Heterogeneous cellular networks with flexible cell association: a comprehensive downlink SINR analysis. IEEE Trans. Wirel. Commun., 11(10): 3484–3495. http://dx.doi.org/10.1109/TWC.2012.081612.111361 Li, Y., Jin, D., Yuan, J., et al., 2014. Coalitional games for resource allocation in the device-to-device uplink underlaying cellular networks. IEEE Trans. Wirel. Commun., 13(7): 3965–3977. http://dx.doi.org/10.1109/TWC.2014.2325552 Lien, S., Chen, K., Lin, Y., 2011. Toward ubiquitous massive accesses in 3GPP machine-to-machine communications. IEEE Commun. Mag., 49(4): 66–74. http://dx.doi.org/10.1109/MCOM.2011.5741148 López-Pérez, D., Güvenc, İ., Roche, G., et al., 2011. Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wirel. Commun., 18(3): 22–30. http://dx.doi.org/10.1109/MWC.2011.5876497 Madan, R., Borran, J., Sampath, A., et al., 2010. Cell association and interference coordination in heterogeneous LTE-A cellular networks. IEEE J. Sel. Areas Commun., 28(9): 1479–1489. http://dx.doi.org/10.1109/JSAC.2010.101209 Nesterov, Y., Nemirovski, A., 1994. Interior point polynomial time methods in convex programming. In: SIAM Studies in Applied Mathematics. Philadelphia, PA. Saad, W., Han, Z., Hjørungnes, A., 2011. Coalitional games for cooperative wireless cellular networks. In: Hossain, E., Kim, D., Bhargava, V. (Eds.), Cooperative Cellular Wireless Networks. Cambridge University Press. Singh, S., Baccelli, F., Andrews, J.G., 2014. On association cells in random heterogeneous networks. IEEE Wirel. Commun. Lett., 3(1): 70–73. http://dx.doi.org/10.1109/WCL.2013.111713.130707 Singh, S., Zhang, X., Andrews, J.G., 2015. Joint rate and SINR coverage analysis for decoupled uplink-downlink biased cell associations in HetNets. IEEE Trans. Wirel. Commun., 14(10): 5360–5373. http://dx.doi.org/10.1109/TWC.2015.2437378 Smiljkovikj, K., Popovski, P., Gavrilovska, L., 2015. Analysis of the decoupled access for downlink and uplink in wireless heterogeneous networks. IEEE Wirel. Commun. Lett., 4(2): 173–176. http://dx.doi.org/10.1109/LWC.2015.2388676 Son, K., Kim, H., Yi, Y., et al., 2011. Base station operation and user association mechanisms for energy-delay tradeoffs in green cellular networks. IEEE J. Sel. Areas Commun., 29(8): 1525–1536. http://dx.doi.org/10.1109/JSAC.2011.110903 Yang, C., Li, J., Guizani, M., 2016. Cooperation for spectral and energy efficiency in ultra-dense small cell networks. IEEE Wirel. Commun., 23(1): 64–71. http://dx.doi.org/10.1109/MWC.2016.7422407 Ye, Q., Rong, B., Chen, Y., et al., 2013. User association for load balancing in heterogeneous cellular networks. IEEE Trans. Wirel. Commun., 12(6): 2706–2716. http://dx.doi.org/10.1109/TWC.2013.040413.120676