Joint production and energy supply planning of an industrial microgrid

Zoe Fornier1,2, Dorian Grosso2, Vincent Leclere1
1CERMICS, Ecole des Ponts, Marne-la-Vallée, France
2METRON, Paris, France

Tóm tắt

We consider the problem of jointly optimizing the daily production planning and energy supply management of an industrial complex, with manufacturing processes, renewable energies and energy storage systems. It is naturally formulated as a mixed-integer multistage stochastic problem. This problem is challenging for three main reasons: there is a large number of time steps (typically 24), renewable energies are uncertain and uncontrollable, and we need binary variables modeling hard constraints. We discuss various solution strategies, in particular Model Predictive Control, Dynamic Programming, and heuristics based on the Stochastic Dual Dynamic Programming algorithm. We compare these strategies on two variants of the problem: with or without day-ahead energy purchases.

Tài liệu tham khảo

Ahmed, S., Cabral, F.G., da Costa, B.F.P.: Stochastic Lipschitz dynamic programming. Math. Program. 191(2) (2022). https://doi.org/10.1007/s10107-020-01569-z. ISSN:0025-5610, 1436-4646 Alonso-Travesset, À., Martín, H., Coronas, S., de la Hoz, J.: Optimization models under uncertainty in distributed generation systems: a review. Energies 15(5) (2022). https://doi.org/10.3390/en15051932. ISSN:1996-1073 Bänsch, K., Busse, J., Meisel, F., Rieck, J., Scholz, S., Volling, T., Wichmann, M.G.: Energy-aware decision support models in production environments: a systematic literature review. Comput. Ind. Eng. 159 (2021). https://doi.org/10.1016/j.cie.2021.107456. ISSN:0360-8352 Biel, K., Glock, C.H.: Systematic literature review of decision support models for energy-efficient production planning. Comput. Ind. Eng. 101 (2016). https://doi.org/10.1016/j.cie.2016.08.021. ISSN:0360-8352 Biel, K., Zhao, F., Sutherland, J.W., Glock, C.H.: Flow shop scheduling with grid-integrated onsite wind power using stochastic MILP. Int. J. Prod. Res. 56(5) (2018). https://doi.org/10.1080/00207543.2017.1351638. ISSN:002-7543, 1366-588X Birge, J., Louveaux, F.: Introduction to Stochastic Dynamic Programming (1997). https://doi.org/10.1007/b97617. ISBN:978-0-387-98217-5 Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper. Res. 33(5) (1985). https://doi.org/10.1287/opre.33.5.989. ISSN:0030-364X, 1526-5463 Bohlayer, M., Fleschutz, M., Braun, M., Zöttl, G.: Energy-intense production-inventory planning with participation in sequential energy markets. Appl. Energy 258 (2020). https://doi.org/10.1016/j.apenergy.2019.113954 Fattahi, M., Mosadegh, H., Hasani, A.: Sustainable planning in mining supply chains with renewable energy integration: a real-life case study. Resour. Policy 74 (2021). https://doi.org/10.1016/j.resourpol.2018.11.010. ISSN:03014207 Fazli Khalaf, A., Wang, Y.: Energy-cost-aware flow shop scheduling considering intermittent renewables, energy storage, and real-time electricity pricing. Int. J. Energy Res. 42(12) (2018). https://doi.org/10.1002/er.4130. ISSN:0363907X Forcier, M., Leclère, V.: Trajectory Following Dynamic Programming algorithms without finite support assumptions. Journal of Convex Analysis, 30(3), (2023). https://www.heldermann.de/JCA/JCA30/JCA303/jca30045.htm Füllner, C., Rebennack, S.: Stochastic Dual Dynamic Programming and Its Variants, preprint (2021). https://optimization-online.org/?p=16920 Füllner, C., Rebennack, S.: Non-convex nested benders decomposition. Math. Program. 196(1–2), 987–1024 (2022). https://doi.org/10.1007/s10107-021-01740-0. Accessed 11 Aug 2023. ISSN:0025-5610, 1436-4646 Georgious, R., Refaat, R., Garcia, J., Daoud, A.A.: Review on energy storage systems in microgrids. Electronics 10(17) (2021). https://doi.org/10.3390/electronics10172134. ISSN:2079-9292 Golari, M., Fan, N., Jin, T.: Multistage stochastic optimization for production-inventory planning with intermittent renewable energy. Prod. Oper. Manag. 26 (2016). https://doi.org/10.1111/poms.12657 Hajipour, E., Bozorg, M., Fotuhi-Firuzabad, M.: Stochastic capacity expansion planning of remote microgrids with wind farms and energy storage. IEEE Trans. Sustain. Energy 6(2). (2015). https://doi.org/10.1109/TSTE.2014.2376356. ISSN:1949-3029, 1949-3037 Higle, J.L., Kempf, K.G.: Production planning under supply and demand uncertainty: a stochastic programming approach. In: Stochastic Programming (2010). https://doi.org/10.1007/978-1-4419-1642-614. ISBN:978-1-4419-1641-9 978-1-4419-1642-6 Hirsch, A., Parag, Y., Guerrero, J.: Microgrids a review of technologies, key drivers, and outstanding issues (2018). https://doi.org/10.1016/j.rser.2018.03.040 Ierapetritou, M.G., Wu, D., Vin, J., Sweeney, P., Chigirinskiy, M.: Cost minimization in an energy-intensive plant using mathematical programming approaches. Ind. Eng. Chem. Res. 41(21) (2002). https://doi.org/10.1021/ie011012b. ISSN:0888-5885, 1520-5045 International Energy Agency: Global Energy Review 2021 (2021). https://www.iea.org/reports/globalenergy-review-2021. Online. Accessed 13 Sept 2022 International Energy Agency: The Cost of Capital in Clean Energy Transitions (2021). https://www.iea.org/articles/the-cost-of -capital-in-clean-energy-transitions. Online. Accessed 24 Apr 2023 International Energy Agency: Tracking Industry 2021 (2021). https://www.iea.org/reports/tracking-industry-2021. Online. Accessed 13 Sept 2022 International Renewable Energy Agency: Renewable Power Generation Costs in 2021 (2022). https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021. Online. Accessed 13 Sept 2022 KEPCO (2022). data https://home.kepco.co.kr/kepco/EN/main.do. Online. Accessed 13 Sept 2022 Li, B., Tian, Y., Chen, F., Jin, T.: Toward net-zero carbon manufacturing operations: an onsite renewables solution. J. Oper. Res. Soc. 68(3) (2017). https://doi.org/10.1057/s41274-016-0014-5. ISSN:0160-5682, 1476-9360 Manne, A.S.: On the Job-Shop Scheduling Problem. Oper. Res. 8, 219–223. (1960). https://doi.org/10.1287/opre.8.2.219 Moon, J.-Y., Park, J.: Smart production scheduling with time-dependent and machine-dependent electricity cost by considering distributed energy resources and energy storage. Int. J. Prod. Res. 52 (2013). https://doi.org/10.1080/00207543.2013.860251 New Energy and Industrial Technology Development Organization (2022). https://appww1.infoc.nedo.go.jp/appww/index.html?lang=2. Online. Accessed 13 Sept 2022 Pereira, M.V.F., Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52(1–3) (1991). https://doi.org/10.1007/BF01582895. ISSN:0025-5610, 1436-4646 Pham, A., Jin, T., Novoa, C., Qin, J.: A multi-site production and microgrid planning model for net-zero energy operations. Int. J. Prod. Econ. 218 (2019). https://doi.org/10.1016/j.ijpe.2019.04.036. ISSN:09255273 Philpott, A.B., Wahid, F., Bonnans, J.F.: MIDAS: a mixed integer dynamic approximation scheme. Math. Program. 181(1) (2020). https://doi.org/10.1007/s10107-019-01368-1. ISSN:1436-4646 Quezada, F., Gicquel, C., Kedad-Sidhoum, S.: A stochastic dual dynamic integer programming based approach for remanufacturing planning under uncertainty. Int. J. Prod. Res. 61(17), 5992–6012 (2023). https://doi.org/10.1080/00207543.2022.2120924. ISSN:0020-7543, 1366-588X. Accessed 14 Aug 2023 Renna, P., Materi, S.: A literature review of energy efficiency and sustainability in manufacturing systems. Appl. Sci. 11(16), 7366 (2021). https://doi.org/10.3390/app11167366. ISSN:2076-3417. Accessed 18 Aug 2022 Ruiz Duarte, J.L., Fan, N., Jin, T.: Multi-process production scheduling with variable renewable integration and demand response. Eur. J. Oper. Res. 281(1) (2020). https://doi.org/10.1016/j.ejor.2019.08.017. ISSN:03772217 Shahandeh, H., Nasab, F.M., Li, Z.: Multistage stochastic capacity planning of partially upgraded bitumen production with hybrid solution method. Optim. Eng. 20(4), 1573–2924 (2019). https://doi.org/10.1007/s11081-019-09426-5. ISSN:1389-4420 Shapiro, A.: On complexity of multistage stochastic programs. Oper. Res. Lett. 34(1) (2006). https://doi.org/10.1016/j.orl.2005.02.003. ISSN:01676377 Tsianikas, S., Yousefi, N., Zhou, J., Rodgers, M.D., Coit, D.: A storage expansion planning framework using reinforcement learning and simulation-based optimization. Appl. Energy 290 (2021). https://doi.org/10.1016/j.apenergy.2021.116778. ISSN:03062619 Wang, S., Mason, S.J., Gangammanavar, H.: Stochastic optimization for flow-shop scheduling with on-site renewable energy generation using a case in the United States. Comput. Ind. Eng. 149 (2020). https://doi.org/10.1016/j.cie.2020.106812. ISSN:03608352 Zou, J., Ahmed, S., Sun, X.A.: Stochastic dual dynamic integer programming. Math. Program. 175(1–2) (2019). https://doi.org/10.1007/s10107-018-1249-5. ISSN:0025-5610, 1436-4646