Joint production and energy supply planning of an industrial microgrid
Springer Science and Business Media LLC - Trang 1-33 - 2024
Tóm tắt
We consider the problem of jointly optimizing the daily production planning and energy supply management of an industrial complex, with manufacturing processes, renewable energies and energy storage systems. It is naturally formulated as a mixed-integer multistage stochastic problem. This problem is challenging for three main reasons: there is a large number of time steps (typically 24), renewable energies are uncertain and uncontrollable, and we need binary variables modeling hard constraints. We discuss various solution strategies, in particular Model Predictive Control, Dynamic Programming, and heuristics based on the Stochastic Dual Dynamic Programming algorithm. We compare these strategies on two variants of the problem: with or without day-ahead energy purchases.
Tài liệu tham khảo
Ahmed, S., Cabral, F.G., da Costa, B.F.P.: Stochastic Lipschitz dynamic programming. Math. Program. 191(2) (2022). https://doi.org/10.1007/s10107-020-01569-z. ISSN:0025-5610, 1436-4646
Alonso-Travesset, À., Martín, H., Coronas, S., de la Hoz, J.: Optimization models under uncertainty in distributed generation systems: a review. Energies 15(5) (2022). https://doi.org/10.3390/en15051932. ISSN:1996-1073
Bänsch, K., Busse, J., Meisel, F., Rieck, J., Scholz, S., Volling, T., Wichmann, M.G.: Energy-aware decision support models in production environments: a systematic literature review. Comput. Ind. Eng. 159 (2021). https://doi.org/10.1016/j.cie.2021.107456. ISSN:0360-8352
Biel, K., Glock, C.H.: Systematic literature review of decision support models for energy-efficient production planning. Comput. Ind. Eng. 101 (2016). https://doi.org/10.1016/j.cie.2016.08.021. ISSN:0360-8352
Biel, K., Zhao, F., Sutherland, J.W., Glock, C.H.: Flow shop scheduling with grid-integrated onsite wind power using stochastic MILP. Int. J. Prod. Res. 56(5) (2018). https://doi.org/10.1080/00207543.2017.1351638. ISSN:002-7543, 1366-588X
Birge, J., Louveaux, F.: Introduction to Stochastic Dynamic Programming (1997). https://doi.org/10.1007/b97617. ISBN:978-0-387-98217-5
Birge, J.R.: Decomposition and partitioning methods for multistage stochastic linear programs. Oper. Res. 33(5) (1985). https://doi.org/10.1287/opre.33.5.989. ISSN:0030-364X, 1526-5463
Bohlayer, M., Fleschutz, M., Braun, M., Zöttl, G.: Energy-intense production-inventory planning with participation in sequential energy markets. Appl. Energy 258 (2020). https://doi.org/10.1016/j.apenergy.2019.113954
Fattahi, M., Mosadegh, H., Hasani, A.: Sustainable planning in mining supply chains with renewable energy integration: a real-life case study. Resour. Policy 74 (2021). https://doi.org/10.1016/j.resourpol.2018.11.010. ISSN:03014207
Fazli Khalaf, A., Wang, Y.: Energy-cost-aware flow shop scheduling considering intermittent renewables, energy storage, and real-time electricity pricing. Int. J. Energy Res. 42(12) (2018). https://doi.org/10.1002/er.4130. ISSN:0363907X
Forcier, M., Leclère, V.: Trajectory Following Dynamic Programming algorithms without finite support assumptions. Journal of Convex Analysis, 30(3), (2023). https://www.heldermann.de/JCA/JCA30/JCA303/jca30045.htm
Füllner, C., Rebennack, S.: Stochastic Dual Dynamic Programming and Its Variants, preprint (2021). https://optimization-online.org/?p=16920
Füllner, C., Rebennack, S.: Non-convex nested benders decomposition. Math. Program. 196(1–2), 987–1024 (2022). https://doi.org/10.1007/s10107-021-01740-0. Accessed 11 Aug 2023. ISSN:0025-5610, 1436-4646
Georgious, R., Refaat, R., Garcia, J., Daoud, A.A.: Review on energy storage systems in microgrids. Electronics 10(17) (2021). https://doi.org/10.3390/electronics10172134. ISSN:2079-9292
Golari, M., Fan, N., Jin, T.: Multistage stochastic optimization for production-inventory planning with intermittent renewable energy. Prod. Oper. Manag. 26 (2016). https://doi.org/10.1111/poms.12657
Hajipour, E., Bozorg, M., Fotuhi-Firuzabad, M.: Stochastic capacity expansion planning of remote microgrids with wind farms and energy storage. IEEE Trans. Sustain. Energy 6(2). (2015). https://doi.org/10.1109/TSTE.2014.2376356. ISSN:1949-3029, 1949-3037
Higle, J.L., Kempf, K.G.: Production planning under supply and demand uncertainty: a stochastic programming approach. In: Stochastic Programming (2010). https://doi.org/10.1007/978-1-4419-1642-614. ISBN:978-1-4419-1641-9 978-1-4419-1642-6
Hirsch, A., Parag, Y., Guerrero, J.: Microgrids a review of technologies, key drivers, and outstanding issues (2018). https://doi.org/10.1016/j.rser.2018.03.040
Ierapetritou, M.G., Wu, D., Vin, J., Sweeney, P., Chigirinskiy, M.: Cost minimization in an energy-intensive plant using mathematical programming approaches. Ind. Eng. Chem. Res. 41(21) (2002). https://doi.org/10.1021/ie011012b. ISSN:0888-5885, 1520-5045
International Energy Agency: Global Energy Review 2021 (2021). https://www.iea.org/reports/globalenergy-review-2021. Online. Accessed 13 Sept 2022
International Energy Agency: The Cost of Capital in Clean Energy Transitions (2021). https://www.iea.org/articles/the-cost-of -capital-in-clean-energy-transitions. Online. Accessed 24 Apr 2023
International Energy Agency: Tracking Industry 2021 (2021). https://www.iea.org/reports/tracking-industry-2021. Online. Accessed 13 Sept 2022
International Renewable Energy Agency: Renewable Power Generation Costs in 2021 (2022). https://www.irena.org/publications/2022/Jul/Renewable-Power-Generation-Costs-in-2021. Online. Accessed 13 Sept 2022
KEPCO (2022). data https://home.kepco.co.kr/kepco/EN/main.do. Online. Accessed 13 Sept 2022
Li, B., Tian, Y., Chen, F., Jin, T.: Toward net-zero carbon manufacturing operations: an onsite renewables solution. J. Oper. Res. Soc. 68(3) (2017). https://doi.org/10.1057/s41274-016-0014-5. ISSN:0160-5682, 1476-9360
Manne, A.S.: On the Job-Shop Scheduling Problem. Oper. Res. 8, 219–223. (1960). https://doi.org/10.1287/opre.8.2.219
Moon, J.-Y., Park, J.: Smart production scheduling with time-dependent and machine-dependent electricity cost by considering distributed energy resources and energy storage. Int. J. Prod. Res. 52 (2013). https://doi.org/10.1080/00207543.2013.860251
New Energy and Industrial Technology Development Organization (2022). https://appww1.infoc.nedo.go.jp/appww/index.html?lang=2. Online. Accessed 13 Sept 2022
Pereira, M.V.F., Pinto, L.M.V.G.: Multi-stage stochastic optimization applied to energy planning. Math. Program. 52(1–3) (1991). https://doi.org/10.1007/BF01582895. ISSN:0025-5610, 1436-4646
Pham, A., Jin, T., Novoa, C., Qin, J.: A multi-site production and microgrid planning model for net-zero energy operations. Int. J. Prod. Econ. 218 (2019). https://doi.org/10.1016/j.ijpe.2019.04.036. ISSN:09255273
Philpott, A.B., Wahid, F., Bonnans, J.F.: MIDAS: a mixed integer dynamic approximation scheme. Math. Program. 181(1) (2020). https://doi.org/10.1007/s10107-019-01368-1. ISSN:1436-4646
Quezada, F., Gicquel, C., Kedad-Sidhoum, S.: A stochastic dual dynamic integer programming based approach for remanufacturing planning under uncertainty. Int. J. Prod. Res. 61(17), 5992–6012 (2023). https://doi.org/10.1080/00207543.2022.2120924. ISSN:0020-7543, 1366-588X. Accessed 14 Aug 2023
Renna, P., Materi, S.: A literature review of energy efficiency and sustainability in manufacturing systems. Appl. Sci. 11(16), 7366 (2021). https://doi.org/10.3390/app11167366. ISSN:2076-3417. Accessed 18 Aug 2022
Ruiz Duarte, J.L., Fan, N., Jin, T.: Multi-process production scheduling with variable renewable integration and demand response. Eur. J. Oper. Res. 281(1) (2020). https://doi.org/10.1016/j.ejor.2019.08.017. ISSN:03772217
Shahandeh, H., Nasab, F.M., Li, Z.: Multistage stochastic capacity planning of partially upgraded bitumen production with hybrid solution method. Optim. Eng. 20(4), 1573–2924 (2019). https://doi.org/10.1007/s11081-019-09426-5. ISSN:1389-4420
Shapiro, A.: On complexity of multistage stochastic programs. Oper. Res. Lett. 34(1) (2006). https://doi.org/10.1016/j.orl.2005.02.003. ISSN:01676377
Tsianikas, S., Yousefi, N., Zhou, J., Rodgers, M.D., Coit, D.: A storage expansion planning framework using reinforcement learning and simulation-based optimization. Appl. Energy 290 (2021). https://doi.org/10.1016/j.apenergy.2021.116778. ISSN:03062619
Wang, S., Mason, S.J., Gangammanavar, H.: Stochastic optimization for flow-shop scheduling with on-site renewable energy generation using a case in the United States. Comput. Ind. Eng. 149 (2020). https://doi.org/10.1016/j.cie.2020.106812. ISSN:03608352
Zou, J., Ahmed, S., Sun, X.A.: Stochastic dual dynamic integer programming. Math. Program. 175(1–2) (2019). https://doi.org/10.1007/s10107-018-1249-5. ISSN:0025-5610, 1436-4646