Joint Supercomputer Center of the Russian Academy of Sciences: Present and Future

Lobachevskii Journal of Mathematics - Tập 40 Số 11 - Trang 1853-1862 - 2019
G. I. Savin1, B. M. Shabanov1, Pavel Telegin1, А. В. Баранов1
1Joint Supercomputer Center of the Russian Academy of Sciences (JSCC RAS), Branch of Federal State Institution “Scientific Research Institute for System Analysis of the Russian Academy of Sciences”, Moscow, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

V. K. Levin, Domestic supercomputers MVS family. http://parallel.ru/mvs/levin.html. Accessed Apr. 19, 2019.

V. Korneev, “The development of system software for parallel supercomputers,” Lect. Notes Comput. Sci. 2823, 46–53 (2003). https://doi.org/10.1007/978-3-540-39864-6_5

W. P. Turner, J. H. Seader, and K. G. Brill, Industry Standard Tier Classifications Define Site Infrastructure Performance (2001). http://www.emquest.net/Tier_Classification.pdf. Accessed Apr. 19, 2019.

O. Aladyshev, A. Baranov, A. Ovsyannikov, G. Balayan, and V. Sinitsin, “Methods and tools of combining jobs flows from cloud platforms and supercomputer resource managers,” Program. Prod. Sist. Algoritmy, No. 4, 54–63 (2018). https://doi.org/10.15827/2311-6749.29.337

A. Reuther et al., “Scalable system scheduling for HPC and big data,” J. Parallel Distrib. Comput. 111, 76–92 (2018). https://doi.org/10.1016/j.jpdc.2017.06.009

A. V. Baranov, A. V. Kiselev, V. V. Starichkov, R. P. onin, and D. S. Lyakhovets, “Comparison of batch processing systems in terms of organizing an industrial account,” in Proceedings of the International Supercomputer Conference, September 17–22, 2012, Novorossiysk (Mosk. Gos. Univ., Moscow, 2012), 506–508.

O. Aladyshev and S. Leshchev, “Features of a network of data storages for supercomputer center,” Proc. Sci. Res. Inst. System Anal. RAS 7(4), 151–156 (2017).

J. Yuventi and R. Mehdizadeh, “A critical analysis of Power Usage Effectiveness and its use in communicating data center energy consumption,” Energy Buildings 64, 90–94 (2013). https://doi.org/10.1016/j.enbuild.2013.04.015

S. Moss, Getting into Hot Water (2018). https://www.datacenterdynamics.com/analysis/getting-into-hot-water/. Accessed Apr. 12, 2019.

I. Odyntsov, E. Tutlyaeva, and A. Moskovsiy, “Towards an exascale supercomputer infrastructure,” in Scientific Services and Internet, Proceedings of the 19th All-Russian Scientific Conference, Novorossiysk, Russia, Sept. 18–23, 2017 (2017), pp. 377–378. https://doi.org/10.20948/abrau-2017-78

Uptime Institute 8th Annual Data Center Survey Shows Need for Change with Rise of Complex Digital Infrastructure. https://uptimeinstitute.com/component/content/article/17-news/1082-uptime-institute-8th-annual-data-center-survey-shows-need-for-change-with-rise-of-complex-digital-infrastructure. Accessed Apr. 12, 2019.

Green ICT: Sustainable Communications and Information Technology. Is PUE Still Above 2.0 for Most Data Centers? http://www.vertatique.com/no-one-can-agree-typical-pue.AccessedApr. 12, 2019.

M. S. Birrittella et al., “Intel R Omni-path architecture: enabling scalable, high performance fabrics,” in Proceedings of the IEEE 23rd Annual Symposium on High-Performance Interconnects, Santa Clara, CA, 2015, pp. 1–9. https://doi.org/10.1109/HOTI.2015.22

A. Baranov et al., “Effective usage of the link between geographically distributed supercomputer centers,” Tr. Inst. Sist. Anal. RAN 7 (4), 137–142 (2017).

A. Baranov, E. Kiselev, and D. Chernyaev, “Experimental comparison of performance and fault tolerance of software packages Pyramid, X-COM, and BOINC,” Commun. Comput. Inform. Sci. 687, 279–290 (2016). https://doi.org/10.1007/978-3-319-55669-7_22

A. V. Baranov and D. S. Nikolaev, “The use of container virtualization in the high-performance computing,” Program. Prod. Sist. Teor. Prilozh. 7(1 (28)), 117–134 (2016). https://doi.org/10.25209/2079-3316-2016-7-1-117-134

A. V. Baranov, G. I. Savin, B. M. Shabanov, et al., “Methods of jobs containerization for supercomputer workload managers,” Lobachevskii J. Math. 40 (5), 525–534 (2019). https://doi.org/10.1134/S1995080219050020

A. A. Rybakov, “Computational workload distribution between supercomputer nodes for fluid dynamics calculations with grid fragmentation using,” Sovrev Inform. Tekhnol. IT-Obrazov 12, 101–107 (2016).

A. V. Baranov, E. A. Kiselev, E. S. Kormilitsin, V. F Ogaryshev, and P. N. Telegin, “Modification of the statistic subsystem of the Joint Supercomputer Center of the Russian Academy of Sciences,” Tr. Inst. Sist. Anal. RAN 8 (4), 136–144 (2018). https://doi.org/10.25682/NIISI.2018.4.0016

B. M. Shabanov et al., “The jobs management sstem for the distributed network of the supercomputer centers,” Tr. Inst. Sist. Anal. RAN 8 (6), 65–73 (2018). https://doi.org/10.25682/NIISI.2018.6.0009

A. V. Baranov and D. S. Lyakhovets, “Comparison of the quality of job scheduling in workload management systems SLURM and SUPPZ,” in Scientific Services & Internet: All Facets of Parallelism, Proceedings of the International Supercomputing Conference, Novorossiysk, Russia, Sept. 23–28, 2013 (2013), pp. 410–414.

L. A. Benderskii, D. A. Lyubimov, A. O. Chestnykh, B. M. Shabanov, and A. A. Rubakov, “The use of the RANS/ILES method to study the influence of coflow wind on the flow in a hot, nonisobaric, supersonic airdrome jet during its interaction with the jet blast deflector,” High Temp. 56, 247–254 (2018). https://doi.org/10.1134/S0018151X18020037

W. Kramer, “Top500 versus sustained performance: the top problems with the top500 list—and what to do about them,” in Proceedings of the 21st International Conference on Parallel Architectures and Compilation Techniques PACT’ 12 (ACM, New York, NY, 2012), pp. 223–230. https://doi.org/10.1145/2370816.2370850

N. Dikarev, B. Shabanov, and A. Shmelev, “Vector data flow processor and shared-memory multiprocessor built on its base,” Tr. Inst. Sist. Anal. RAN 7 (4), 143–150 (2017).

O. S. Aladyshev, A. V. Baranov, R. P. Ionin, E. A. Kiselev, and B. M. Shabanov, “Variants of deployment the high performance computing in clouds,” in Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering EIConRus, pp. 1453–1457. https://doi.org/10.1109/EIConRus.2018.8317371

ExaHyPE—An Exascale Hyperbolic PDE Engine. https://exahype.eu/project-objectives. Accessed Apr. 12, 2019.

T. Skordas, “Horizon 2020,” SPIE Profess. (2012). https://doi.org/10.1117/2.4201204.10

M. Biktimirov, A. Zhizhchenko, A. Ovsyannikov, A. Sher, and P. Klimov, “Efficient network connectivity for the Data-center in the distributed ICT infrastructure,” Mekh. Upravl. Inform. 6 (51), 33–40 (2014).

A. N. Sotnikov, I. N. Sobolevskaya, S. A. Kirillov, and I. N. Cherednichenko, “Subject-oriented and interdisciplinary digital collections in the electronic environment knowledge,” CEUR Workshop Proc. 2260 448–453 (2018).