Joint Neural Collaborative Filtering for Recommender Systems

ACM Transactions on Information Systems - Tập 37 Số 4 - Trang 1-30 - 2019
Wanyu Chen1, Fei Cai2, Honghui Chen2, Maarten de Rijke3
1National University of Defense Technology, China and University of Amsterdam, Amsterdam, The Netherlands
2National University of Defense Technology, Changsha, China
3University of Amsterdam, Amsterdam, The Netherlands

Tóm tắt

We propose a Joint Neural Collaborative Filtering (J-NCF) method for recommender systems. The J-NCF model applies a joint neural network that couples deep feature learning and deep interaction modeling with a rating matrix. Deep feature learning extracts feature representations of users and items with a deep learning architecture based on a user-item rating matrix. Deep interaction modeling captures non-linear user-item interactions with a deep neural network using the feature representations generated by the deep feature learning process as input. J-NCF enables the deep feature learning and deep interaction modeling processes to optimize each other through joint training, which leads to improved recommendation performance. In addition, we design a new loss function for optimization that takes both implicit and explicit feedback, point-wise and pair-wise loss into account. Experiments on several real-world datasets show significant improvements of J-NCF over state-of-the-art methods, with improvements of up to 8.24% on the MovieLens 100K dataset, 10.81% on the MovieLens 1M dataset, and 10.21% on the Amazon Movies dataset in terms of HR@10. NDCG@10 improvements are 12.42%, 14.24%, and 15.06%, respectively. We also conduct experiments to evaluate the scalability and sensitivity of J-NCF. Our experiments show that the J-NCF model has a competitive recommendation performance with inactive users and different degrees of data sparsity when compared to state-of-the-art baselines.

Từ khóa


Tài liệu tham khảo

10.1016/j.aci.2014.10.001

10.1109/TKDE.2005.99

Basiliyos Tilahun Betru , Charles Awono Onana , and Batchakui Bernabe . 2017 . Deep learning methods on recommender system: A survey of state-of-the-art.Int . J. Comput. Appl. 162 , 10 (2017), 17 -- 22 . Basiliyos Tilahun Betru, Charles Awono Onana, and Batchakui Bernabe. 2017. Deep learning methods on recommender system: A survey of state-of-the-art.Int. J. Comput. Appl. 162, 10 (2017), 17--22.

10.1145/2043932.2043996

10.1016/j.ipm.2015.12.008

10.1561/1500000055

10.1109/TKDE.2016.2568179

10.1145/2910579

10.1145/3125486.3125493

10.1145/3077136.3080797

10.1145/3209978.3210079

10.1145/2988450.2988454

10.1145/1864708.1864721

10.5555/3172077.3172127

10.1145/3077136.3080777

10.1145/3038912.3052569

10.1145/2911451.2911489

10.1145/963770.963772

10.1145/3269206.3271761

Balázs Hidasi , Alexandros Karatzoglou , Linas Baltrunas , and Domonkos Tikk . 2016 . Session-based recommendations with recurrent neural networks . In Proceedings of the International Conference on Learning Representations (ICLR’16) . Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk. 2016. Session-based recommendations with recurrent neural networks. In Proceedings of the International Conference on Learning Representations (ICLR’16).

10.1145/2959100.2959167

Xue Hong-Jian , Dai Xinyu , Zhang Jianbing , Huang Shujian , and Chen Jiajun . 2017 . Deep matrix factorization models for recommender systems . In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’17) . 3203--3209. Xue Hong-Jian, Dai Xinyu, Zhang Jianbing, Huang Shujian, and Chen Jiajun. 2017. Deep matrix factorization models for recommender systems. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’17). 3203--3209.

10.1145/2505515.2505665

10.1145/2487575.2487589

10.1145/2959100.2959165

Diederik Kingma and Jimmy Ba . 2014 . Adam: A method for stochastic optimization. Retrieved from: arXiv preprint arXiv:1412.6980. Diederik Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. Retrieved from: arXiv preprint arXiv:1412.6980.

10.1145/1401890.1401944

10.1109/MC.2009.263

10.1145/2806416.2806527

10.1145/3041021.3054207

10.1109/MIC.2003.1167344

10.1007/978-981-10-4154-9_52

10.1007/978-3-319-26535-3_69

10.1007/s10791-017-9321-y

Arkadiusz Paterek . 2007 . Improving regularized singular value decomposition for collaborative filtering . In Proceedings of the Conference on Knowledge Discovery and Data Mining (KDD’07) . Arkadiusz Paterek. 2007. Improving regularized singular value decomposition for collaborative filtering. In Proceedings of the Conference on Knowledge Discovery and Data Mining (KDD’07).

Gopalan Prem , Jake M. Hofman , and David M . Blei . 2013 . Scalable recommendation with Poisson factorization. Retrieved from: arXiv preprint arXiv:1311.1704. Gopalan Prem, Jake M. Hofman, and David M. Blei. 2013. Scalable recommendation with Poisson factorization. Retrieved from: arXiv preprint arXiv:1311.1704.

Steffen Rendle , Christoph Freudenthaler , Zeno Gantner , and Lars Schmidt-Thieme . 2009 . BPR: Bayesian personalized ranking from implicit feedback . In Proceedings of theConference on Uncertainty in Artificial Intelligence (UAI’09) . 452--461. Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme. 2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings of theConference on Uncertainty in Artificial Intelligence (UAI’09). 452--461.

Ruslan Salakhutdinov and Andriy Mnih . 2007 . Probabilistic matrix factorization . In Proceedings of the Conference on Neural Information Processing Systems (NIPS’07) . Curran Associates Inc., 1257--1264. Ruslan Salakhutdinov and Andriy Mnih. 2007. Probabilistic matrix factorization. In Proceedings of the Conference on Neural Information Processing Systems (NIPS’07). Curran Associates Inc., 1257--1264.

10.1145/1273496.1273596

10.1145/371920.372071

10.21236/ADA439541

10.1145/2740908.2742726

10.1145/3108148

10.1155/2009/421425

10.1145/2959100.2959180

Tran The Truyen , Dinh Q. Phung , and Svetha Venkatesh . 2009 . Ordinal Boltzmann machines for collaborative filtering . In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI’09) . 548--556. Tran The Truyen, Dinh Q. Phung, and Svetha Venkatesh. 2009. Ordinal Boltzmann machines for collaborative filtering. In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI’09). 548--556.

Aaron van den Oord , Sander Dieleman , and Benjamin Schrauwen . 2013 . Deep content-based music recommendation . In Proceedings of the Conference on Neural Information Processing Systems (NIPS’13) . 2643--2651. Aaron van den Oord, Sander Dieleman, and Benjamin Schrauwen. 2013. Deep content-based music recommendation. In Proceedings of the Conference on Neural Information Processing Systems (NIPS’13). 2643--2651.

10.1145/2020408.2020480

10.1145/2783258.2783273

10.1145/3038912.3052638

10.1145/3331184.3331267

10.1145/2835776.2835837

10.1145/2939672.2939673

10.1145/3285029

10.1145/3018661.3018665

Yin Zheng , Bangsheng Tang , Wenkui Ding , and Hanning Zhou . 2016 . A neural autoregressive approach to collaborative filtering . In Proceedings of the International Conference on Machine Learning (ICML’16) . 764--773. Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. 2016. A neural autoregressive approach to collaborative filtering. In Proceedings of the International Conference on Machine Learning (ICML’16). 764--773.