Joint Impedance Spectroscopy Analysis of 10Sc1CeSZ and 8YSZ Solid Electrolytes for SOFC
Tóm tắt
Từ khóa
Tài liệu tham khảo
S.P.S. Badwal, “Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity,” Solid State Ionics, 52, Nos. 1–3, 23–32 (1992).
Z. Wang, M. Cheng, Y. Dong, M. Zhang, and H. Zhang, “Anode-supported SOFC with 1Ce10ScZr modified cathode/electrolyte interface,” J. Power Sources, 156, 306–310 (2006).
J.A. Kilner and R.Z. Brook, “A study of oxygen ion conductivity in doped non-stoichiometric oxides,” Solid State Ionics, 6, No. 3, 237–252 (1982).
Y. Mizutani , M. Tamura , M. Kawai, and O. Yamamoto, “Development of high-performance electrolyte in SOFC,” Solid State Ionics, 72, 271–275 (1994).
S. Badwal, F. Ciacchi, and D. Milosevic, “Scandia–zirconia electrolytes for intermediate temperature solid oxide fuel cell operation,” Solid State Ionics, 136–137, 91–99 (2000).
S. Omar, A. Belda, A. Escardino, and N. Bonanos, “Ionic conductivity ageing investigation of 1Ce10ScSZ in different partial pressures of oxygen,” Solid State Ionics, 184, No. 1, 2–5 (2011).
E. Ivers-Tiffée, A. Weber, and D. Herbstritt, “Materials and technologies for SOCF-components,” J. Eur. Ceram. Soc., 21, 1805–1811 (2001).
M. Liu, C.R. He, W.G. Wang, and J.X. Wang, “Synthesis and characterization of 10Sc1CeSZ powders prepared by a solid–liquid method for electrolyte-supported solid oxide fuel cells,” Ceram. Int., 40, No. 4, 5441–5446 (2014).
Z. Wang, M. Cheng, Y. Dong, M. Zhang, and H. Zhang, “Anode-supported SOFC with 1Ce10ScZr modified cathode/electrolyte interface,” J. Power Sources, 156, 306–310 (2006).
C. Haering, A. Roosen, H. Schichl, and M. Schnöller, “Degradation of the electrical conductivity in stabilized zirconia system. Part II: Scandia-stabilized zirconia,” Solid State Ionics, 176, Nos. 3–4, 261–268 (2005).
D.S. Lee, W.S. Kim, S.H. Choi, J. Kim, H.W. Lee, and J.H. Lee, “Characterization of ZrO2 co-doped with Sc2O3 and CeO2 electrolyte for the application of intermediate temperature SOFCs,” Solid State Ionics, 176, 33–39 (2005).
R.L. Grosso and E.N.S. Muccillo, “Sintering, phase composition and ionic conductivity of zirconiascandia-ceria,” J. Power Sources, 233, 6–13 (2013).
R.L. Grosso, M. Bertolete, I.F. Machado, R. Muccillo, and E.N.S. Muccillo, “Ionic conductivity and phase stability of spark plasma sintered scandia and ceria-stabilized zirconia,” Solid State Ionics, 230, 48–51 (2013).
H.A. Abbas, C. Argirusis, M. Kilo, H.D. Wiemhofer, F.F. Hammad, and M. Hanafi, “Preparation and conductivity of ternary scandia-stabilised zirconia,” Solid State Ionics,” 184, No. 1, 6–9 (2011).
V.V. Lakshmi, R. Bauri, A.S. Gandhi, and S. Paul, “Synthesis and characterization of nanocrystalline ScSZ electrolyte for SOFCs,” Int. J. Hydrogen Energy, 36, No. 22, 14936–14942 (2011).
T.I. Politova and J.T.S. Irvine, “Investigation of scandia–yttria–zirconia system as an electrolyte material for intermediate temperature fuel cells—influence of yttria content in system (Y2O3)x(Sc2O3)(11–x)(ZrO2)89,” Solid State Ionics, 168, Nos. 1–2, 153–165 (2004).
C. Haering, A. Roosen, H. Schichl, “Degradation of the electrical conductivity in stabilised zirconia systems. Part I: Yttria-stabilised zirconia,” Solid State Ionics, 176, Nos. 3–4, 253–259 (2005).
Y. Arachi, T. Asai, O. Yamamoto, Y. Takeda, N. Imanishi, K. Kawate, and C. Tamakoshi, “Electrical Conductivity of ZrO2–Sc2O3 Doped with HfO2, CeO2, and Ga2O3,” J. Electrochem. Soc., 148, No. 5, A520–A523 (2001).
N.V. Tokiy, B.I. Perekrestov, D.L. Savina, and I.A. Danilenko, “Concentration and temperature dependences of the oxygen migration energy in yttrium-stabilized zirconia,” Solid State Phys., 53, No. 9, 1827–1831 (2011).
I.R. Gibson and J.T.S. Irvine, “Study of the order-disorder transition in yttria-stabilized zirconia by neutron diffraction,” J. Mater. Chem., 6(5), 895–898 (1996).
S.A. Firstov and G.F. Sarzhan, “On temperature dependence of diffusion constant,” Electron Microscopy and Strength of Materials, No. 20, 71–75 (2014).
M. Liu, C. He, J. Wang, W.G. Wang, and Z. Wang, “Investigation of (CeO2)x(Sc2O3)(0.11–x) (ZrO2)0.89 (x = = 0.01–0.10) electrolyte material for intermediate-temperature solid oxide fuel cells,” J. Alloy. Compd., 502, 319–323 (2010).
F. Yuan, J. Wang, H. Miao, C. Guo, and W.G. Wang, “Investigation of the crystal structure and ionic conductivity in the ternary system (Yb2O3)x–(Sc2O3)(0.11–x)–(ZrO2)0.89 (x = 0–0.11),” J. Alloy. Compd., 549, 200–205 (2013).
S.P.S. Badwal and J. Drennan, “Microstructure/conductivity relationship in the scandia–zirconia system,” Solid State Ionics, 53–56, 769–776 (1992).
Y. Mizutani, M. Tamura, M. Kawai, and O. Yamamoto, “Development of high-performance electrolyte in SOFC,” Solid State Ionics, 72, 271–275 (1994).
R. Ruh, H.J. Garrett, R.F. Domagala, and V.A. Patel, “The system zirconia-scandia,” J. Am. Ceram. Soc., 60, Nos. 9–10, 399–403 (1977).
H. Tu, X. Liu, and Q. Yu, “Synthesis and Characterization of Scandia ceria stabilized zirconia powders prepared by polymeric precursor method for integration into anode-supported solid oxide fuel cells,” J. Power Sources, 196, No. 6, 3109–3113 (2011).
O.D. Vasylyev, A.L. Smirnova, M.M. Brychevskyi, I.M. Brodnikovskyi, S.O. Firstov, V.G. Vereschak, G.Ya. Akimov, Yu.O. Komysa, J.T.S. Irvine, C.-D. Savaniu, V.A. Sadykov, and I. Kosacki, “Structural, mechanical and electrochemical properties of ceria doped scandia stabilized Zirconia,” Mater. Sci. Nanostructures, 1, 70–80 (2011).
O. Vasylyev, M. Brychevskyi, Y. Brodnikovskyi, I. Brodnikovska, and S. Firstov, “The boundaries and their impact on properties of zirconia electrolyte,” Electron Microscopy and Strength of Materials, No. 21, 86–101 (2015).
C.X. Guo, J.X. Wang, C.R. He, and W.G. Wang, “Effect of alumina on the properties of ceria and scandia co-doped zirconia for electrolyte-supported SOFC,” Ceramics Int., 39, 9575–9582 (2013).
X. Guo and R. Waser, “Electrical properties of the grain boundaries of oxygen ion conductors: Acceptordoped zirconia and ceria,” Prog. Mater. Sci., 51, No. 2, 151–210 (2006).
J.T.S. Irvine, D.C. Sinclair, and A.R. West, “Electroceramics: Characterization by impedance spectroscopy,” Adv. Mater., 2, No. 3, 132–138 (1990).
C. Peters, “Grain-size Effects in Nanoscaled Electrolyte and Cathode Thin Films for Solid Oxide Fuel Cells (SOFC), PhD thesis, Karlsruhe, KIT Scientific Publishing (2009), p. 174.