Johnson-Cook based criterion incorporating stress triaxiality and deviatoric effect for predicting elevated temperature ductility of titanium alloy sheets

International Journal of Mechanical Sciences - Tập 123 - Trang 94-105 - 2017
Beatrice Valoppi1, Stefania Bruschi1, Andrea Ghiotti1, Rajiv Shivpuri2
1Department of Industrial Engineering, University of Padova, via Venezia 1, 35131 Padova, Italy
2Manufacturing Research Group, Ohio State University, 1971 Neil Avenue, Columbus, OH 43210, USA

Tài liệu tham khảo

Karbasian, 2010, A review on hot stamping, J Mater Process Technol, 210, 2103, 10.1016/j.jmatprotec.2010.07.019 Merklein, 2016, Hot stamping of boron steel sheets with tailored properties: a review, J Mater Process Technol, 228, 11, 10.1016/j.jmatprotec.2015.09.023 Valoppi, 2016, A hybrid mixed double-sided incremental forming method for forming Ti6Al4V alloy, CIRP Ann - Manuf Technol, 65, 309, 10.1016/j.cirp.2016.04.135 Xu, 2015, Enhancement of process capabilities in electrically-assisted double sided incremental forming, Mater Des, 92, 268, 10.1016/j.matdes.2015.12.009 Tan, 2015, A modified Johnson-Cook model for tensile flow behaviors of 7050-T7451 aluminum alloy at high strain rates, Mater Sci Eng A, 631, 214, 10.1016/j.msea.2015.02.010 Tang, 2015, An improved damage evolution model to predict fracture of steel sheet at elevated temperature, J Mater Process Technol, 228, 76, 10.1016/j.jmatprotec.2015.08.007 Guzmán, 2015, Assessment of damage and anisotropic plasticity models to predict Ti-6Al-4V behavior, Key Eng Mater, 651–653, 575, 10.4028/www.scientific.net/KEM.651-653.575 Merklein, 2015, A new approach to the Evaluation of forming limits in sheet metal forming, Key Eng Mater, 639, 333, 10.4028/www.scientific.net/KEM.639.333 Keeler, 1964, Plastic instability and fracture in sheets stretched over rigid punches, ASM Trans Q, 56, 25 Goodwin, 1968, Application of strain analysis to sheet metal problems in the press shop, SAE Pap, 10.4271/680093 Bruschi, 2014, Testing and modelling of material behaviour and formability in sheet metal forming, CIRP Ann – Manuf Technol, 63, 727, 10.1016/j.cirp.2014.05.005 Li, 2011, Ductile fracture: experiments and computations, Int J Plast, 27, 147, 10.1016/j.ijplas.2010.04.001 Qian, 2015, Experimental and numerical investigations into the ductile fracture during the forming of flat-rolled 5083-O aluminum alloy sheet, J Mater Process Technol, 220, 264, 10.1016/j.jmatprotec.2015.01.031 Cockcroft, 1968, Ductility and the workability of metals, J Inst Met, 96, 33 Brozzo P, Deluca B, Rendina R. A new method for the prediction of formability limits in metal sheets. In: Proceedings of the 7th Bienn Conference IDDR; 1972. Oyane, 1972, Criteria of ductile fracture strain, Proc JSME, 15, 1507, 10.1299/jsme1958.15.1507 Johnson, 1985, Fracture characteristic of three metals subjected to various strains, strain rates, temperatures and pressures, Eng Fract Mech, 21, 31, 10.1016/0013-7944(85)90052-9 Rice, 1969, On the ductile enlargement of voids in triaxial stress fields, J Mech Phys Solids, 17, 201, 10.1016/0022-5096(69)90033-7 Atkins, 1996, Fracture in forming, J Mater Process Technol, 56, 609, 10.1016/0924-0136(95)01875-1 Giglio, 2012, Ductile fracture locus of Ti6Al4V titanium alloy, Int J Mech Sci, 54, 121, 10.1016/j.ijmecsci.2011.10.003 Bao, 2004, A comparative study on various ductile crack formation criteria, J Eng Mater Technol, 126, 314, 10.1115/1.1755244 Bao, 2004, Dependence of fracture ductility on thickness, Thin-Walled Struct, 42, 1211, 10.1016/j.tws.2004.03.011 Novella, 2014, Modelling of AA6082 ductile damage evolution under hot rolling conditions, Procedia Eng, 81, 221, 10.1016/j.proeng.2014.09.154 Ghiotti, 2009, Modelling of the Mannesmann effect, CIRP Ann – Manuf Technol, 58, 255, 10.1016/j.cirp.2009.03.099 Martins, 2014, Characterization of fracture loci in metal forming, Int J Mech Sci, 83, 112, 10.1016/j.ijmecsci.2014.04.003 Ma, 2016, Prediction of forming limit in DP590 steel sheet forming: an extended fracture criterion, Mater Des, 96, 401, 10.1016/j.matdes.2016.02.034 Wilkins, 1980 Bai, 2008, A new model of metal plasticity and fracture with pressure and Lode dependence, Int J Plast, 24, 1071, 10.1016/j.ijplas.2007.09.004 Xue, 2007, Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading, Int J Solids Struct, 44, 5163, 10.1016/j.ijsolstr.2006.12.026 Kamoulakos, 2003 Wierzbicki, 2005 Wierzbicki, 2005, Calibration and evaluation of seven fracture models, Int J Mech Sci, 47, 719, 10.1016/j.ijmecsci.2005.03.003 Brünig, 2015, Stress state dependence of ductile damage and fracture behavior: experiments and numerical simulations, Eng Fract Mech, 141, 152, 10.1016/j.engfracmech.2015.05.022 Valoppi, 2015, Elevated temperature behaviour of Ti6Al4V sheets with thermo-electro-chemical modified surfaces for biomedical applications, Proc Inst Mech Eng Part L J Mater Des Appl Boyer R, Welsch G. Materials properties handbook : titanium alloys; 1994. Lieblich, 2016, Thermal oxidation of medical Ti6Al4V blasted with ceramic particles: effects on the microstructure, residual stresses and mechanical properties, J Mech Behav Biomed Mater, 54, 173, 10.1016/j.jmbbm.2015.09.032 Giglio, 2012, Numerical simulation of the slant fracture of a helicopter’s rotor hub with ductile damage failure criteria, Fatigue Fract Eng Mater Struct, 35, 317, 10.1111/j.1460-2695.2011.01622.x Allahverdizadeh, 2015, An experimental and numerical study for the damage characterization of a Ti-6AL-4V titanium alloy, Int J Mech Sci, 93, 32, 10.1016/j.ijmecsci.2015.01.005 Katani, 2013, Micromechanical modelling of damage behaviour of Ti-6Al-4V, Mater Des, 49, 1016, 10.1016/j.matdes.2013.02.021 McClintock, 1968, A criterion of ductile fracture by the growth of holes, J Appl Mech, 35, 363, 10.1115/1.3601204 He, 2013, A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel, Mater Des, 52, 677, 10.1016/j.matdes.2013.06.010 Borvik, 2001, A computational model of viscoplasticity and ductile damage for impact and penetration, Eur J Mech A/Solids, 20, 685, 10.1016/S0997-7538(01)01157-3 Metallography and Microstructures. vol. 9. The materials information company. ASM International; 2001. doi:〈http://doi.org/10.1016/S0026-0576(03)90166-8〉. Elmer, 2005, In situ observations of lattice expansion and transformation rates of α and β phases in Ti–6Al–4V, Mater Sci Eng A, 391, 104, 10.1016/j.msea.2004.08.084 Fan, 2011, Internal-state-variable based self-consistent constitutive modeling for hot working of two-phase titanium alloys coupling microstructure evolution, Int J Plast, 27, 1833, 10.1016/j.ijplas.2011.05.008 Karpat, 2011, Temperature dependent flow softening of titanium alloy Ti6Al4V: an investigation using finite element simulation of machining, J Mater Process Technol, 211, 737, 10.1016/j.jmatprotec.2010.12.008 Khan, 2004, Quasi-static and dynamic loading responses and constitutive modeling of titanium alloys, Int J Plast, 20, 2233, 10.1016/j.ijplas.2003.06.005 Zhang, 2014, Role of phase transformation in chip segmentation during high speed machining of dual phase titanium alloys, J Mater Process Technol, 214, 3048, 10.1016/j.jmatprotec.2014.07.007 ASTM B831. Standard test method for shear testing of thin aluminum alloy products. n.d. Bariani, 2013, Hot stamping of AA5083 aluminium alloy sheets, CIRP Ann – Manuf Technol, 62, 251, 10.1016/j.cirp.2013.03.050 Valoppi, 2016, Modelling of fracture onset in Ti6Al4V sheets deformed at elevated temperature, Procedia Manuf, 5, 248, 10.1016/j.promfg.2016.08.022 Fractography. vol. 12. The materials information company. ASM International; 2001. doi:〈http://doi.org/10.1016/S0026-0576(03)90166-8〉.